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A B S T R A C T

In this research paper we present a mathematical model for COVID-19 in high-risk settings and low-risk
settings which might be infection dynamics between hotspots and less risky communities. The main idea was
to couple the SIR model with alternating risk levels from the two different settings high and low-risk settings.
Therefore, building from this model we partition the infected class into two categories, the symptomatic and the
asymptomatic. Using this approach we simulated COVID-19 dynamics in low and high-risk settings with auto-
switching risk settings. Again, the model was analyzed using both analytic methods and numerical methods.
The results of this study suggest that switching risk levels in different settings plays a pivotal role in COVID-19
progression dynamics. Hence, population reaction time to adhere to preventative measures and interventions
ought to be implemented with flash speed targeting first the high-risk setting while containing the dynamics
in low-risk settings.
1. Introduction

COVID-19 disease is defined as the disease caused by SARS-CoV-2,
the coronavirus that emerged in December 2019 (Zhu et al., 2020).
This disease originated in Wuhan province, Wuhan in China by the
close of the year 2019 (Anon, 2020). Following this major outbreak,
the disease then spread to different countries, and continents and
Zimbabwe recorded its first case by the end of March 2020. The disease
first spread to major cities like Harare, Bulawayo, and Victoria Falls
and it later spread to other cities and rural areas. The spread of this
disease within the country lead to a series of intervention measures for
example lockdowns, social distancing, and disinfection of public places.
According to World Health Organization (WHO) reports, Zimbabwe had
recorded more than 121 000 cases including 4 156 deaths by August
2021 (Zhu et al., 2020; Anon, 2020).

The major signs and symptoms of this disease include severe pneu-
monia, low respiratory airways, fatigue, headache, loss of taste or smell,
and sore throat (Volpicelli and Gargani, 2020; Rali and Sauer, 2020).
The disease is mainly spread through contact with infected people
or through contact with contaminated surfaces. When a susceptible
individual is exposed to the virus, symptoms may appear after 2–
14 days and the patient may die or recover in 2 weeks. An infected
person may be either symptomatic or asymptomatic but they are all
infectious. An asymptomatic patient may spread the disease more than
a symptomatic patient since individuals may not be aware of their
sickness unless tested (Kumar, 2020).
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COVID-19 may be transmitted through respiratory droplets which
can travel a distance of six feet or less in the air. It may also be
transmitted through fomites (indirectly) for the time the virus is on the
environmental surfaces and the time may range from hours to days. For
the transmission process to take, the contaminated droplets need reach
to the eyes, nose, or mouth of a susceptible individual (Galbadage and
Peterson, 2020; Xiang et al., 2020).

The spread of SARS-CoV-2 can be prevented through exercising
high levels of cleanliness. Frequent washing of hands with soap or
hand sanitizer, proper wearing of face masks, and practicing social
distancing can help reduce the spread of this deadly disease. Most
importantly, it is encouraged individuals should stay at home and
avoid unnecessary movements and mixing with people. Strict COVID-
19 lockdown measures have been put in place by the government of
Zimbabwe in order to help stop its spread. Public service offices were
de-congested, the workforce reduced in different companies, and inter-
city travel banned (during level 4 of lockdown) (Mackworth-Young
et al., 2021). The country had to also welcome the administration of the
COVID-19 vaccine, Sinovac and Sinopharm were developed in China.
Despite all these measures, covid-19 has remained a major challenge
in the country, especially in large cities like Harare and Bulawayo
as they recorded high numbers of cases per day (Murewanhema and
Makurumidze, 2020; Dzinamarira et al., 2021).

Harare and Bulawayo are the largest cities in Zimbabwe charac-
terized by large populations, with Harare being the highest followed
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Fig. 1. Risk Setting Pyramid.

by Bulawayo. According to the 2012 census, Harare province had a
population of more than 2.4 million while Bulawayo province recorded
a population of about 665,940 (Anon, 2022). Whenever there was a
disease outbreak, these and other big cities of Zimbabwe were the
first ones to be affected. Communicable diseases like Covid-19 spread
at a fast rate in such areas and they may be said to be high-risk ar-
eas (Mackworth-Young et al., 2021; Murewanhema and Makurumidze,
2020; Dzinamarira et al., 2021). With respect to Covid-19, high-risk
areas are associated with high infection rates, infectious Covid-19
variants like ‘Beta’ and the environmental viral load is high (Brindle
and Gawande, 2020). Rural areas and other less populated areas may
be referred to as low-risk areas as far as Covid-19 is concerned. These
areas are characterized by low mobility (reducing chances of importing
the disease) and low infection rate, few reported cases, less infectious
variants like Alpha’ and the environmental viral load is very low.

1.1. High-risk setting and low-risk setting

In this section, we present a risk-setting pyramid with two levels at
the bottom is a low-risk setting, and at the top is a high-risk setting (see
Fig. 1).

A high-risk setting can be viewed in 2-dimension firstly the higher
risk of developing critical illness due to the disease, secondly, the
high-risk setting as a population with a high transmission rate of
increased community viral load, increased mobility, and population
with few preventative measures in place. The first case of higher-
risk groups involves individuals with the following chronic conditions
asthma, diabetes, lung disease, obesity, sickle cell disease, and heart
disease which increase the severity of Covid-19 amongst the infected
individual. This study focuses on the high-risk setting in the context
of increased transmission rate together with high mobility as factors
impacting the rapid propagation of the disease.

Adherence to Covid-19 preventative measures has a positive influ-
ence on the risk levels of the population the higher the adherence to
the preventative measures the lower the risk of contracting the disease.
On the other hand, the lower adherence to Covid 19 preventative
measures the higher the risk of contracting the disease. Therefore,
hand washing, wearing of a mask in public spaces, quarantine, social
distancing, proper building ventilation, and vaccinations are some of
the preventative measures installed by the populations to minimize the
risk of the disease.

In a low-risk setting there exist a low transmission rate, reduced
community viral load i.e an environment with few reservoirs or sources
of the disease, less disease burden, reduced mobility i.e low risk of
importing new infections, and high adherence to preventative mea-
sures. The use of clinical datasets has played a pivotal role in making
2

recommendations on certain preventative methods that can impact the
Covid-19 community levels. Through the use of baseline data commu-
nities/populations can then be classified as either high-risk settings or
low-risk settings.

2. Model formulation

A mathematical model is defined as a description of a real-life
situation in mathematics terms. Hence, so far scientists have developed
many mathematical models to represent the dynamics of Covid-19 for
example (Li et al., 2020; Riou and Althaus, 2020; Zhong et al., 2021;
Zhou et al., 2020). In this study, we extend a basic SIR model to model
a Covid-19 infection in high and low-risk settings (Weiss, 2013). The
model is in the form of eight ordinary differential equations which
shows how the members in a ‘Covid-19 present environment’ interact
as time progresses. The total human population has been divided into
eight compartments.

The susceptible population has been divided into two classes, the
susceptible from a low risk, 𝑆𝐿 and the susceptible from high risk,
𝑆𝐻 . Infected individuals are not always symptomatic, some are asymp-
tomatic and do not show any signs and symptoms of infection. The
total number of infected individuals has been grouped into four classes,
Infected symptomatic from a low-risk setting (𝐼SL), Infected asymp-
tomatic from a low risk (𝐼AL), infected symptomatic from a high-risk
setting (𝐼SH) and infected asymptomatic from a high-risk setting (𝐼AL).
The last two compartments are for the recovered individuals, the first
being the recovered from a low-risk setting and the recovered from a
high risk. Members are added to the susceptible classes at a rate of
𝜃. 𝜇𝑆𝐿 and 𝜇𝑆𝐻 represent the natural death rate in low and high-risk
settings respectively. Members are removed from the susceptible low
risk to the Infected symptomatic low risk and infected asymptomatic
low risk respectively by (1 − 𝜋1)𝛽𝑆𝐿𝐼SL and 𝜋1𝛽𝑆𝐿𝐼AL. On a high risk
setting the, the rate of moving from the susceptible population to the in-
fected symptomatic and infected asymptomatic is respectively given by
(1 − 𝜋2)𝛽𝑆𝐻𝐼SH and 𝜋2𝛽𝑆𝐻𝐼AH. The susceptible low-risk interact with
the infected asymptomatic at a rate of 𝜋4𝛽𝑆𝐿𝐼AH and the susceptible
high-risk move to the infected asymptomatic low-risk class at a rate of
𝜋3𝛽𝑆𝐻𝐼AL. The model assumes that there is no interaction between the
infected symptomatic and other classes. The disease-induced death for
symptomatic low-risk and asymptomatic low risk is given by 𝛼𝐼SL and
𝜙𝐼AL respectively. In a high-risk setting, infected symptomatic die at a
rate of 𝛼𝐼SH and 𝜙𝐼AH is the number of deaths of the asymptomatic. The
infected asymptomatic classes for both settings can interact. 𝜏2𝐼AL is the
rate of moving from the infected asymptomatic low risk to the infected
asymptomatic and 𝜏1𝐼AH for the vice-versa. After some time, infected
individuals are removed from the infected class to the recovered by
𝜅𝐼SL and 𝜎𝐼AL in a low risk setting and by 𝜅𝐼SH and 𝜎𝐼AH in a high
risk setting. After recovering from the disease, members from a low and
high risk may face natural death at a rate of 𝜇𝑅𝐿 and 𝜇𝑅𝐻 respectively.

2.1. Compartmental model

Fig. 2 gives a photographic view of our model. We see a visual
description of how the susceptible class for both the low and high-
risk settings progresses in the respective infectious classes and later
progresses into the recovery classes. From Fig. 2 the arrows depict the
possible movements of individuals from one compartment to the other
at a given rate as labeled in the diagram. The interaction between the
infectious compartment at low risk and that at high-risk settings may be
caused by the migration of individuals from a low-risk environment to a
high-risk environment and vice versa. This may be possible only for the
asymptomatic infectious group as they can move around easily without
the virus being detected. However, the is no flow between broken lines
but these represent the possibility of interaction of individuals from the
two-compartment without necessarily moving individuals.



Physics and Chemistry of the Earth 128 (2022) 103288M. Ndlovu et al.
Fig. 2. Deterministic Model a pictorial view of high and low-risk settings dynamics.
The compartmental model is the pictorial view of the network
flow and shows how these eight compartments (classes) are inter-
linked. An individual can progress from one compartment to another.
Therefore, this general mathematical modeling tool has great power in
the development of simulation schemes that can be used by decision-
makers. Many biological systems or dynamic systems phenomena when
compared to these models provide the validity and applicability of
this kind of research tool. Compartmental models help to predict the
current future trends of systems or diseases. A mathematical model
can then be used to test different types of intervention measures that
may contribute to different directions of the disease during a pandemic.
Hence, this is the main reason why compartmental models are useful
in disease modeling and epidemiology.

From Fig. 2, we obtain the following systems of ordinary differential
equations.
𝑑𝑆𝐿
dt = 𝜃 − 𝜇𝑆𝐿 − (1 − 𝜋3)𝛽𝑆𝐿𝐼SL − 𝜋3𝛽𝑆𝐿𝐼AL − 𝜋4𝛽1𝑆𝐿𝐼AH

𝑑𝑆𝐻
dt = 𝜃 − 𝜇𝑆𝐻 − (1 − 𝜋4)𝛽1𝑆𝐻𝐼SH − 𝜋4𝛽1𝑆𝐻𝐼AH − 𝜋3𝛽𝑆𝐻𝐼AL

𝑑𝐼AL
dt = 𝜋3𝛽𝑆𝐿𝐼AL + 𝜋3𝛽𝑆𝐻𝐼AL + 𝜏1𝐼AH − (𝜏2 + 𝜙 + 𝜎)𝐼AL

𝑑𝐼AH
dt = 𝜋4𝛽1𝑆𝐻𝐼AH + 𝜋4𝛽1𝑆𝐿𝐼AH + 𝜏2𝐼AL − (𝜏1 + 𝜙 + 𝜎)𝐼AH

𝑑𝐼SL
dt = (1 − 𝜋3)𝛽𝑆𝐿𝐼SL − (𝛼 + 𝜅)𝐼SL

𝑑𝐼SH
dt = (1 − 𝜋4)𝛽1𝑆𝐻𝐼SH − (𝛼 + 𝜅)𝐼SH

𝑑𝑅𝐿
dt = 𝜅𝐼SL + 𝜎𝐼AL − 𝜇𝑅𝐿

𝑑𝑅𝐻
dt = 𝜅𝐼SH + 𝜎𝐼AH − 𝜇𝑅𝐻

(1)

The model of differential equations can be analyzed qualitatively and
quantitatively. In performing qualitative analysis the following cal-
culations were conducted including equilibrium points, reproduction
number, and sensitivity analysis. On the other hand, the quantitative
analysis includes performing numerical simulations.

2.2. Transmission rate

A transmission rate is the measure of the spread of disease in a
population. As discussed in the following papers (Zhu et al., 2020;
Anon, 2020; Li et al., 2020; Riou and Althaus, 2020; He et al., 2013;
Lin et al., 2020) Covid-19 transmission is the spread of the virus in the
community through different mediums. The first case of consideration
in this study is the case constant transmission rate shown in Fig. 3
which is our control.

Fig. 3 shows a constant transmission rate 𝛽 for population B in a
low-risk setting for all the time intervals 0 < 𝑡 < 20 and 𝑡 ≥ 20. Again,
3

Fig. 3. Two populations, population A and population B with constant risk settings.

for population A the transmission rate 𝛽1 was maintained at the same
level for all the time intervals 0 < 𝑡 < 20 and 𝑡 ≥ 20. The switch line at
𝑡 = 20 or simply the switch point represents the duration for the public
to react in Covid-19 settings. The value of 20 is assumed since it falls
within the duration range for public reaction cited by Mushayabasa
et al. (2020) in He et al. (2013), Lin et al. (2020). However, is an
arbitrary point in the study to effect a switch from one risk setting to
the other for a population as highlighted in Fig. 4.

The second case of consideration is the out-of-control scenario with
switching transmission rates from one risk setting to another. There-
fore, by making an assumption that this jump happens at a point 𝑡 = 20.
According to Fig. 4, the population B starts with constant transmission
rate 𝛽 in a low-risk setting for the time interval 0 < 𝑡 < 20 and then
switch at the switch line to a transmission rate 𝛽1 in high-risk setting
for the time interval 𝑡 ≥ 20.

For population A it launches at a high-risk setting with transmission
rate 𝛽1 on the interval 0 < 𝑡 < 20 but switches to a low-risk setting on
the interval 𝑡 ≥ 20 with transmission rate 𝛽. The purpose of switch-
ing transmission rates is due to the seasonality attribute of Covid-19
(Ndlovu et al., 2022) and evidence of the multiscale nature of infectious
diseases (Garira, 2018; Garira et al., 2014). Thus, the mathematical
equations derived from Fig. 4 are as follows:

Transmission on Population A =

{

𝛽1 0 < 𝑡 < 20
𝛽 𝑡 ≥ 0

(2)

Transmission on Population B =

{

𝛽 0 < 𝑡 < 20
(3)
𝛽1 𝑡 ≥ 0
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Fig. 4. Two populations, population A and population B with switching risk settings.

Eqs. (2) and (3) are piecewise functions used for mathematical model-
ing of the population switch from one risk setting to another.

3. Analysis of the model.

In the preliminary stages of the analysis of the model, we deter-
mined the disease equilibrium points and also computed the repro-
duction number 𝑅0, which serves as pointers to the model Eq. (1).
The qualitative analysis will highlight critical insights into the validity,
reliability, and behavior of the dynamical system model.

3.1. Disease free equilibrium point

A disease-free equilibrium point 𝐸∗ exists when the system of
ordinary differential equations (1) is equated to zero to obtain the
following solutions;
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(4)

On the other hand, the equilibrium point can be viewed as the kernel of
the system Eq. (1), and under these conditions, the virus is not expected
to exist in the population. Again the system is stable at the equilibrium
point.

3.2. Reproduction number (𝑅0)

The basic reproduction number is defined as the disease’s potential
to spread within a given population. It may also be defined as a
metric that is used to describe the ability of transmission by infectious
agents. It is the number of secondary cases from an infectious individual
in his/her entire infectious period. In this model, we calculated our
reproduction numbers for the low and high-risk settings using the next-
generation matrix. The basic reproductive number is used to determine
the local stability of the disease-free equilibrium point. The disease-free
equilibrium point is locally stable when 𝑅0 < 1 and unstable whenever
𝑅0 > 1.

For a low-risk setting, the basic reproduction number is given as

𝑅𝐿 =
2𝛽𝜃𝜋1 (5)
4

𝜇(𝜏2 + 𝜎 + 𝜙)
For a high-risk setting, the basic reproductive number is given by

𝑅𝐻 =
2𝛽1𝜃𝜋2

𝜇(𝜏1 + 𝜎 + 𝜙)
(6)

Each environment, community, and population either low-risk or high-
risk has its own specific reproduction number since the infectious
individuals from the different settings have a different average rate of
spreading the infection.

3.3. Stability analysis

The local stability of the disease-free equilibrium point was obtained
by examining the linearized form of the system at the steady state 𝐸∗.
See Eq. (7) given in Box I, where 𝜔2 = −𝜏2−𝜙−𝜎−𝜇, 𝜔0 = −𝜏1−𝜙−𝜎−𝜇
and 𝜔1 = −𝛼−𝜅−𝜇. The local stability is investigated using the Jacobian
matrix 𝐽 (𝐸∗) eigenvalues. The disease-free equilibrium point 𝐸∗ is said
to be locally asymptotically stable if the real parts of the eigenvalues
are all negative, otherwise, it is said to be unstable. The computed
eigenvalues were: 𝜆1 = −𝜇, 𝜆2 = −𝜇, 𝜆3 = −𝜇, 𝜆4 = −𝜇,

𝜆5 =
−𝜋3𝛽𝜃 + 𝛽𝜃 + 𝜇𝜔1

𝜇
, 𝜆6 =

𝛽1𝜃 − 𝜋4𝛽1𝜃 + 𝜇𝜔1
𝜇

, see 𝜆7,8 in Box II.
The first four eigenvalues 𝜆1𝜆4 are clearly negative whereas conditions
for 𝜆5, 𝜆6 are 𝛽𝜃 + 𝜇𝜔1 < 𝜋3𝛽𝜃 and 𝛽1𝜃 + 𝜇𝜔1 < 𝜋4𝛽1𝜃 respectively.
In the case of 𝜆7,8 the first should satisfy the following condition
2𝜋4𝛽1𝜃 + 2𝜋3𝛽𝜃 < −𝜇𝜔0 − 𝜇𝜔2. For 𝜏2 < 𝜏1, 𝛽1 > 𝛽, and 𝜋4 > 𝜋3
and applying these conditions we observe that 𝜔0 > 𝜔2 together with
2𝜋4𝛽1 > 4𝜋3𝛽 hence the discriminant of the eigenvalues is always
positive subject to governing conditions. Therefore, the disease-free
equilibrium is locally asymptotically stable when 𝑅0 < 1. Thus, when
max{𝑅𝐻 , 𝑅𝐿} < 1 is in the close neighborhood of zero by manifold
analysis. Hence, the disease-free equilibrium is locally asymptotically
stable when max{𝑅𝐻 , 𝑅𝐿} < 1.

3.4. Sensitivity analysis of (𝑅0)

The effect of each parameter in the spread of the infection was
analyzed using sensitivity analysis of 𝑅0. We differentiated 𝑅𝐿 and 𝑅𝐻
with respect to each parameter in Eqs. (5)–(6) and observed whether
the parameters had a positive index or a negative index.

𝑑
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(𝑅𝐿) =
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𝑑
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< 0

𝑑
𝑑𝜙

(𝑅𝐿) =
−2𝛽𝜃𝜋1

𝜇(𝜏2 + 𝜎 + 𝜙)2
< 0

𝑑
𝑑𝜋2

(𝑅𝐻 ) =
2𝛽1𝜃

𝜇(𝜏1 + 𝜎 + 𝜙)
> 0

𝑑
𝑑𝜏1

(𝑅𝐻 ) =
−2𝛽1𝜃𝜋2

𝜇(𝜏1 + 𝜎 + 𝜙)2
< 0

(8)

From equations in (8), the following parameter set contains {𝜃, 𝛽, 𝜇,
𝜎, 𝜙, 𝜋1, 𝜋2, 𝜏1, 𝜏2} and {𝜇, 𝜎, 𝜙, 𝜏1, 𝜏2} have a negative index
meaning that in order for us to reduce 𝑅0, we need to work on reducing
parameters with a negative index. Since we cannot control the natural
death rate, we then need to influence or work on reducing disease-
induced death reduces the movement of individuals from low-risk
settings to high-risk settings.



Physics and Chemistry of the Earth 128 (2022) 103288M. Ndlovu et al.
𝐽 (𝐸∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 0 − 𝛽𝜃𝜋3
𝜇 − 𝜃𝜋4𝛽1

𝜇 − 𝛽𝜃(1−𝜋3)
𝜇 0 0 0

0 −𝜇 − 𝛽𝜃𝜋3
𝜇 − 𝜃𝜋4𝛽1

𝜇 0 − 𝜃(1−𝜋4)𝛽1
𝜇 0 0

0 0 2𝛽𝜃𝜋3
𝜇 + 𝜔2 𝜏1 0 0 0 0

0 0 𝜏2
2𝜃𝜋4𝛽1

𝜇 + 𝜔0 0 0 0 0

0 0 0 0 𝛽𝜃(1−𝜋3)
𝜇 + 𝜔1 0 0 0

0 0 0 0 0 𝜃(1−𝜋4)𝛽1
𝜇 + 𝜔1 0 0

0 0 𝜎 0 𝜅 0 −𝜇 0
0 0 0 𝜎 0 𝜅 0 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Box I.
𝜆7,8 =
2𝜋4𝛽1𝜃 + 2𝜋3𝛽𝜃 + 𝜇𝜔0 + 𝜇𝜔2

2𝜇

±

√

(

2𝜋4𝛽1𝜃 + 𝜇
(

𝜔0 − 𝜔2
)) (

2𝜋4𝛽1𝜃 − 4𝜋3𝛽𝜃 + 𝜇𝜔0 − 𝜇𝜔2
)

+ 4
(

𝜋2
3𝛽𝜃

2 + 𝜇2𝜏1𝜏2
)

2𝜇

Box II.
Table 1
Model parameter values and their description.
Parameter Description

𝜇 Natural death rate
𝜃 Natural birth rate
𝛽 Infection rate
𝜋1 Modifying factor on asymptomatic low-risk
𝜋2 Modifying factor on asymptomatic high-risk
𝜋3 Modifying factor on symptomatic high-risk
𝜋4 Modifying factor on symptomatic low-risk
𝛼 Disease induced death rate of Infected symptomatic
𝜙 Disease induced death of infected asymptomatic
𝜅 Recovery rate of infected symptomatic
𝜎 Recovery rate of infected asymptomatic
𝜏1 Movement rate from 𝐼𝐴𝐻 to 𝐼𝐴𝐿
𝜏2 Movement rate from 𝐼𝐴𝐿 to 𝐼𝐴𝐻

4. Numerical simulations

In this section we present results from the simulation of the system
of ordinary differential equations (1). Running numerical simulation
aid in understanding the behavior of the population subjected to dif-
ferent parameter values. Furthermore, the numerical simulations will
assist in exploring the dynamics of the complex system with advantages
as compared to the analytic solutions. The parameter description used
were summarized and given in Table 1.

Table 1 shows the model parameters and what they represent and
again Table 1 helps regulate the model since the parameters have been
described. The parameter values in Table 2 were mainly obtained from
previous authors, some were fitted into the model while others were
estimated. These estimated parameters were varied so as to understand
the model behavior. Parameter values together with parameters de-
scription are the main ingredients for model calibration. Hence, the
output values of the variables are dependent on the assigned parameter
values.

To control the behavior of the model some parameters which
include transmission rate 𝛽, the disease-induced death rate of infected
symptomatic 𝛼, the disease-induced death rate of infected asymp-
tomatic 𝜙, the recovery rate of infected symptomatic 𝜅, and the
recovery rate of infected asymptomatic 𝜎 were assigned specific range
on values. The transmission rate at the low-risk setting was considered
5

Table 2
Table with model parameters values.
Parameter Value Source

𝜇 0.0342 Mushayi et al. (2021)
𝜃 0.0342 Mushayi et al. (2021)
𝛽 [0.183–0.524] Fitted
𝜋1 0.15 Estimated
𝜋2 0.15 Estimated
𝜋3 0.85 Estimated
𝜋4 0.85 Estimated
𝛼 [0.0384–0.0611] Mushayabasa et al. (2020)
𝜙 [0.0384–0.0611] Mushayabasa et al. (2020)
𝜅 [0,2862–0.5231] Mushayabasa et al. (2020)
𝜎 [0,2862–0.5231] Mushayabasa et al. (2020)
𝜏1 0.15 Estimated
𝜏2 0.25 Estimated

to be 0.183 and the transmission rate at the high-risk setting was
considered to be 0.524. Thus, to obtain the estimated value approx-
imate judgment approach was applied together with the numerical
simulations.

The information presented in Tables 1 and 2 supports the explo-
ration of the numerical behavior of the system. Also, this information
was foundational in formulating model adjustments. In the next section,
we compare run and compare numerical simulations for two cases of
low and high-risk settings with constant respective transmission rates,
and low and high-risk settings with switching transmission rates.

4.1. Case 1: High and low-risk settings

In this section we present the simulation graphs obtained that
demonstrate the behavior of the disease in low-risk setting and high-
risk settings. The influence of the disease is observed in the basic model
(model without modifications). Therefore, we present three diagrams
(i) population dynamics in low-risk setting control, (ii) population
dynamics in high-risk setting control, and (iii) infected population
dynamics in both low-risk settings and high-risk settings.

Fig. 5 shows the dynamics of this disease in a low-risk setting. The
dynamics show the behavior of the three classes, Susceptible, infected
symptomatic, and infected asymptomatic. The susceptible population
initially rises rapidly but decreases as soon as the infected population
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Fig. 5. Disease dynamics in a low-risk setting.
Fig. 6. Disease dynamics in a high-risk setting.
rises. Initially, the asymptomatic class is shallow and rises above the
symptomatic as time increases due to the fact that most asymptomatic
individuals are not treated or given any health support.

In general, we expect the disease to persist in low-risk settings
due to the fact that there are no intervention measures incorporated
into the model. Even though some models of Covid-19 suggest dis-
ease persistence in the presence of intervention measures (Lin et al.,
2020; Asempapa et al., 2022). However, the infected populations are
maintained at minimum manageable amounts.

Fig. 6 shows the simulation dynamics of Covid-19 in a high-risk
setting. Generally, the trends for low and high-risk settings are the
same but the numbers in high-risk are high as compared to the low-
risk setting. In a high-risk setting, the infected asymptomatic population
may rise above the susceptible population as time progresses but the
symptomatic class remains low as the infected individuals are easily
noticed quarantined, and given health care services. In a low-risk
setting, the susceptible population is always higher than the susceptible
population in a high-risk setting due to the fact that there are few
6

positive cases in a low-risk area. The disease spreads more rapidly in a
high-risk setting.

Again Fig. 6 shows the effects of parameters and factors driving
the disease dynamics in high-risk settings. Since a high-risk setting
was characterized by a high transmission rate the increase showed
variable increases of infected asymptomatic and infected symptomatic
in high-risk environments. As time progresses the disease dynamics
stabilize to constant levels, and no shocks or jumps are observed after
15 days. In general, the disease persists in high-risk settings with a high
transmission rate. However, we noted that the disease is not capable
of infecting everyone or worse eradicating the whole population. It is
upon the human population to adjust learning to live with the disease
in these risk settings.

According to Fig. 7 shows the infected populations in both high-
risk settings and low-risk settings. The infected population constitutes
a sub-population with the major contributor in driving infections being
asymptomatic in high-risk settings. These are individuals with the
disease but show no symptoms and they are the main drivers of the
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Fig. 7. Susceptible population dynamics.
disease as they can move and spread the disease to the population
without being dictated. Also, the infected asymptomatic in low-risk
settings plays an influential role in the spread of the disease in low-risk
settings. Again, asymptomatic individuals can highly spread the disease
since they can move and spread the disease within the population
unnoticed. Hence, high testing rates were very important in controlling
the disease in the presence of this type of people. Lastly, the two
symptomatic classes played a minimum role in driving the dynamics
of the disease in both settings.

4.2. Case 2: Switching between high and low-risk setting

In this section, we investigate the dynamics of Covid-19 with switch-
ing risk settings. In first case 1, the study considered high and low-risk
settings while maintaining the same risk levels for different commu-
nities or populations. However, in practice risk levels of a certain
community or population fluctuates and change with respect to time
and space. This phenomenon is also supported by the seasonality nature
of the disease and the notion of switching risk levels of setting seems
to be more appropriate in the case of the Covid-19 model rather than
maintaining the population risk settings at constant. Although holding
risk levels constant seems okay for short time intervals it turns out to
be unreliable for long time intervals.

Fig. 8 shows the population dynamics in high-risk setting switching
to low-risk settings. The susceptible population raises rapidly to a
maximum then drops and increases to a steady limit point. After the
switch, the susceptible population increases fast reaching a horizontal
limit. As for the infected asymptomatic population, no major popula-
tion changes occur within the first few days of disease invasion but
thereafter the asymptomatic population shoots to the maximum and
steadily reduced to a point where it tails off to a horizontal limit.
After the switch, the asymptomatic population decreases exponentially.
Finally, the infected symptomatic population steadily increases to a
maximum then immediately decays to some point and after the switch,
the population slightly decreases exponentially.

Fig. 9 shows the population dynamics in low-risk setting switching
to the high-risk setting. The susceptible population rapidly increases
to a maximum and drops within a space of a week. Thereafter the
susceptible population increased and steadily reached a limit. After the
switch, the susceptible population slightly increased and leveled off in
a doomed-shaped manner with minimum changes in the population
7

levels before and after the switch. In terms, of the infected asymp-
tomatic population delay was observed in response then after the delay
followed an increase to the maximum before the graph tailed off to
a horizontal limit. After the switch, the population steadily increased
for about a week to reach an upper bound. Furthermore, the infected
symptomatic population steadily increased and decayed in a belly-like
curve. After the switch, the population increased steadily to reach an
upper bound.

Fig. 10 shows the infected population dynamics with switching risk
levels with a major noticeable change being the rapid decrease of the
asymptomatic population from the high-risk setting switching to the
low-risk setting. While the asymptomatic population rapidly increased
by switching from low-risk setting to high-risk setting. On the other
hand, minimum changes occurred with respect to the symptomatic pop-
ulations. The symptomatic population from high-risk setting slightly
decrease by switching to a low-risk setting and the symptomatic popu-
lation from low-risk setting slightly increased by switching to high-risk
setting.

5. Summary and recommendations

The progression and dynamics of the Covid-19 virus have presented
socio-economic challenges to all populations across the globe. Many re-
searchers have developed different mathematical models to understand
the dynamics of the novel coronavirus disease Covid-19. Again, many
vaccines have been developed to help cab the spread of the disease
in both high-risk setting and low-risk setting. It is therefore pivotal to
understand the propagation of the disease in different settings, espe-
cially with auto-switching characteristics either from low-risk setting
to high-risk setting or from high-risk setting to low-risk setting. In
this paper, we presented a mathematical model with switching risk
settings. The switch from one setting to the other may be a result
of changing disease management strategies or response factors due to
the population reacting to the effects of the disease. Basically, the key
changes were observed in the asymptomatic populations by the switch
from one setting to the other setting. Whereas changes in the infected
population were noted the changes observed were less pronounced as
compared to those in asymptomatic populations.

In the article, a high-risk setting is characterized by a high infection
rate, a high number of Covid-19 positive cases, and high numbers of
asymptomatic individuals. The results of this research are useful as
it aids in intervention strategies in different risk settings. The results
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Fig. 8. Progression dynamics of infected population.
Fig. 9. Populations Progression dynamics of infected population.
indicate that more attention should be on high-risk settings as they
increase the number of recorded cases and disease-induced death as
well. Policy facilitators may also consider the discouraging movement
of people from areas of low-risk settings to areas of high-risk settings.
The results show that if the population was evenly distributed, high-
risk areas would be minimized. More new Covid-19 variants are more
likely to emerge as the virus mutates in high-risk settings. Hence, in
low-risk settings, there are more infected asymptomatic individuals just
like in high-risk settings. Policy facilitators ought to intensify testing in
both settings as it will help determine the infected asymptomatic indi-
viduals. Infected asymptomatic individuals should also be quarantined
as they can spread the disease unaware. Finally, we recommend that
populations should continue immunization programs and also consider
the loss of immunity to those who are fully vaccinated
8
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