FACULTY OF ENGINEERING AND ENVIRONMENT DEPARTMENT OF METALLURGICAL ENGINEERING DEPARTMENT OF MINING ENGINEERING

FLUID MECHANICS

EMI 2105
Final Examination Paper
June 2020
This examination paper consists of 3 pages
Time Allowed: 3 hours
Total Marks: 100
Examiner's Name: Miss M. Kanganga

INSTRUCTIONS

1. This question paper consists of 5 questions
1.1. Question 1 is compulsory
1.2. Answer any other 3
2. Each question carries 25 marks
3. Answer each question on a new page and write as eligible as possible

Additional Requirements

1. calculator

Question 1

1.1 State Newton's law of viscosity.
1.2 With the aid of diagrams, deduce the Newton's law of viscosity.
1.3 State the differences between solids and liquids.

Question 2

2.1 What do you understand by non-Newtonian fluids?
2.2 Explain the following non-Newtonian fluids
a) Pseudo plastics
b) Dilatant substances
c) Rheopectic materials
d) Thixotropic substances[2]

e) Plastic materials [2]
f) Viscoelastic materials [2]
2.3 A reservoir of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ has a mass of 500 kg and a volume of $0.315 \mathrm{~m}^{3}$. Find the carbon tetrachloride's
a) Weight
b) Mass density
c) Specific weight
d) Specific gravity
2.4 What are the causes of viscosity in a gas and a liquid?

Question 3

Figure 1
3.1 In Figure 1, the Fluid with density ρ_{1} is water and the liquid in the U-tube is mercury. If the pressure difference between A and B is $35 \mathrm{kN} / \mathrm{m}^{2}$, and $\mathrm{a}=1 \mathrm{~m}$ and the height difference between A and $\mathrm{B}=30 \mathrm{~cm}$ what is the difference in level h .
3.2 .a tank 3.5 m long and 2.5 wide contains alcohol of relative density 0.82 to a depth of $3 \mathrm{~m} . \mathrm{a}$ 50 mm diameter pipe leads from the bottom of the tank. What will be the reading on a gauge calibrated in Pa connected at a point
a). 150 mm above the bottom of the tank
b) In the 50 mm diameter pipe, 2 m below the bottom of the tank

Question 4

 100 mm . This pipe branches at B into two pipes BC and BD each of 25 mm diameter and a third pipe $B E$ of 50 mm diameter. The flow rates are such that the flow through $B C$ is three times the flow rate through BE and the velocity through BE is $4 \mathrm{~m} / \mathrm{s}$. find the flow rate in the three branches BC, BD, and the velocities in pipes AB, BC, and BE
4.2 A flat plate is struck normally by a jet of 50 mm in diameter with a velocity of $18 \mathrm{~m} / \mathrm{s}$.
a) Calculate the force on the when it is stationary,
b) The force on the plate when it moves in the direction as the jet with a velocity of $6 \mathrm{~m} / \mathrm{s}$.
c) The work done per second and the efficiency in the case of

Question 5

5.1 Design a methodology for coming up with the size of pump and required to pump a certain amount of water from a mine.

