

FACULTY OF ENGINEERING AND ENVIRONMENT

DEPARTMENT OF MINING ENGINEERING

EXCAVATION ENGINEERING EXAMINATION

EMI 2103

Final Examination Paper

June 2020

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Eng Murewa B Zvigumbu

INSTRUCTIONS

- 1. Answer ANY FIVE questions.
- 2. Each question carries 20 marks each.

Additional Requirements

Scientific calculator. MARK ALLOCATION

Questions	Marks
Question 1	20
Question 2	20
Question 3	20
Question 4	20
Question 5	20
Question 6	20
Total Attainable	100

Page 1 of 5

Copyright: Gwanda State University, 2020

SECTION A

Question 1: Mine Power Systems

a) Discuss with aid of sketches the distribution of power in underground coal mine. [10 Marks]	
b) A coil takes a current of 6 A when connected to a 24-V d.c. supply. To obtain the same current with a 50-Hz ac. supply, the voltage required was 30 V. Calculate	
(i) Inductance of the coil	[2 Marks]
(ii) Power factor of the coil.	[3 Marks]
c) Discuss how power correction with capacitors reduces cost in an electrical mine system.	
	[3 Marks]
d) Briefly explain the advantages of load analysis in managing a mine electrical system.	
	[2 Marks]

Question 2: Mechanical excavation.

a) Sketch and describe the construction of a COPROD Drilling machine.	[8 Marks]
b) State and explain the main purpose of drilling in mining.	[4 Marks]
c) Briefly explain choice of drilling equipment and generally factors that influence. [2 Marks]	
d) State the types of drilling mechanism.	[4 Marks]
e) What is the difference between a shank adaptor and chuck?	[2 Marks]

Question 3: Mechanics of impact breaking, Rock Drilling & Explosives

a) Differentiate between the following:	
(i) Low explosive and high explosive.	[2 Marks]
(ii) Dry blasting agent and wet blasting agent.	[2 Marks]
(iii) Safety fuse and detonating fuse.	[2 Marks]
(iv) Detonation and deflagration.	[2 Marks]
(v) Primary and secondary blasting.	[2 Marks]

b) Complete the table below to describe the composition, physical properties, state advantages, disadvantages and applications of the following:

ANFO [5 Marks] SLURRIES [5 Marks]

CATEGORY	ANFO	SLURRIES
Composition		
Physical properties		
Advantages		
Disadvantages		
Applications		

Question 4: Rock Breaking and Blasting Applications

Define the following terms and briefly discuss with aid of sketches appropriate.

a) Hydrodynamic theory of detonation.	[5 Marks]
b) Ideal and non-ideal blasting.	[5 Marks]
c) Ground Vibrations	[5 Marks]
d) Air blast	[5 Marks]

Question 5: Underground Blasting & Tunnel Boring Machines

a) With respect to Tunnel Boring Machines (TBM)	
(i) List those factors affecting TBM performance.	[3 Marks]
(ii) Give a line diagram to depict a general classification of tunneling methods the	at are used
under different situations including varying ground conditions	[4 Marks]
(iii) Discuss the merits and limitations of the rapid drive work with the application	on of TBM.

[3 Marks]

b) A coal seam 3.0 m thick is being mined using drilling and blasting on a square pattern. The hole burden and spacing used are **1.2m** each, respectively. The drill holes are drilled to a depth of 3.6m each. An explosive, coalex of density 1.32 g/cm³ is used to charge the holes. This explosive comes in 32*200 capsules and a **25 kg** case of coalex explosive has a nominal count of **125** capsules. Density of coal is 1450 kg/m³.

(i) How many holes do you expect to find on a 15m production panel?	[2 Marks]
(ii) If 12 ticks are loaded per hole what is the linear charge density?	[2 Marks]
(iii) What is the stemming length per hole?	[2
Marks]	
(iv)Calculate the powder factor in 4 variants of powder factor?	[2 Marks]

swell factor of 1.3? [2 Marks] Question 6: Surface Mining Blasting

(v)If the round blast right down to the toes, what volume of muck pile is generated assuming a

a) In an open pit limestone mine during bench blasting, the spacing used is 1.25 times the burden and a burden of 5 m is kept. If bench height is 11 m and 50 holes are to be blasted,

(i)	Calculate the tonnage of limestone yield if its density is 2.9 t/m3.	[3 Marks]
(ii)	Calculate the powder factor if explosive charged in all holes is 3000 kg.	[3 Marks]
(iii)	Also calculate the limestone that will be yielded per hole.	[4 Marks]
b) (i)]	Discuss the factors that affect the magnitude of vibration.	[5 Marks]
(ii)United State Bureau of Mines (USBM) concluded that ground vibration is given by the		
following equation		

$$v = K[R/\sqrt{Qmax}]^{-B}$$

Define the variables v, K, R, Q_{max} and B

[5 Marks]