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A B S T R A C T

This paper presents evidence and the existence of seasonality in current existing COVID-19 datasets for three
different countries namely Zimbabwe, South Africa, and Botswana. Therefore, we modified the SVIR model
through factoring in the seasonality effect by incorporating moving averages and signal processing techniques
to the disease transmission rate. The simulation results strongly established the existence of seasonality in
COVID-19 dynamics with a correlation of 0.746 between models with seasonality effect at 0.001 significance
level. Finally, the model was used to predict the magnitude and occurrence of the fourth wave.
1. Introduction

In Zimbabwe since the onset of COVID-19, millions of people have
felt the socio-economic burden of the disease while it has also claimed
more than 4082 lives and infected more 125 555 people in a population
estimated to be around 15 092 171 people (Anon, 2021a,b,c,d,e).
The pandemic has continued to cause havoc despite many interven-
tion strategies that have been implemented which include series of
lockdowns, quarantines, banning of alcohol and smoking, social dis-
tancing measures, banning of super spreader events, masking up and
sanitisation (Lone and Ahmad, 2020). However, most of the health
systems, cemeteries and funeral parlours around the country have
been overwhelmed by the effects of this pandemic. Again, this virus
continues to evolve in its host and in ecology resulting in emergent
of numerous new variants (Ciotti et al., 2020). Regardless of this
chaos, scientist around the world have developed the first generation
of vaccines to help us fight this pandemic and Zimbabwe started its
vaccination programme on 18 February 2021. Up until now the country
has so far seen an increased uptake of vaccines with more 1 718 351
people fully vaccinated and about twice as much receiving their first
jab. The vaccination rate currently stands at an average of 41 964
people per day (Anon, 2021d; Musuka et al., 2021; McAbee et al., 2021;
Murewanhema et al., 2021).

Several studies have explored the linkages of COVID-19 and envi-
ronmental factors that contributes to its seasonality (Liu et al., 2020;
Aabed and Lashin, 2021; Hu et al., 2020). For example, in a cold
day people tend to pack inside their rooms in their homes hence it
becomes difficult to adhere to social distancing measures. Therefore,
during cold weather usually houses are poorly ventilated as people
would be avoiding cold and this is the case for developing countries
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where most of the building cooling infrastructure has not yet been
adopted by general populace. However, some studies (Damette et al.,
2021; Altamimi and Ahmed, 2020; Chin et al., 2020) have made some
advances to establish the correlation of temperature, humidity, solar
radiation and rainfall patterns with COVID-19 cases though to some
extent the relationship has not been fully understood. Furthermore,
there are positives in this direction of research because of increasing
COVID-19 datasets and availability which if fully utilised can bring
about quality and clarity on the subject of seasonality of COVID-19.
Various source COVID-19 data-sets can be accessible online with no
charge (Anon, 2021a,b,c,d,e,f).

There are many factors that can be used to generate seasonality
which include environmental factors such as temperature and rain-
fall (Guangbo et al., 2020; Bherwani et al., 2020). However, seasonality
can be as a result of cultural, socio-economic human behaviour think
of this in terms of vacation, holidays (Christmas) which are congruent
to periodic events and exhibit repetitive, generally systematic and
predictive patterns (Byun et al., 2021). In the case of time-series data
seasonality can be viewed as any predictable fluctuation or pattern that
recurs or repeats over a time interval. In addition, with time-series
data-sets the following values to measure seasonality can be computed
seasonal factor, seasonal index or seasonal relativity. Again, these
measures will explain seasonality stating how much surplus and deficit
about the expected value (mean/average) for a particular period (Anon,
2021g; van den and Watmough, 2002). Finally, this paper seeks to fit a
mathematical model using the data-set for Zimbabwe from the period
of 20-Feb 2020 to 20-Aug 2021.
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2. Model formulation

2.1. Model description

In this part of the paper we discuss the formulation of COVID-19
basic model applicable to the Zimbabwe framework which presents
the insights of the spread of this virus. Thus, the human popula-
tion at any given time (𝑡) is given by the susceptible individuals
S) generated by Eq. (1), vaccinated individuals (V) generated by
q. (2), infected asymptomatic individuals (𝐼𝑎) generated by Eq. (3) and

infected symptomatic individuals (𝐼𝑠) generated by Eq. (4) and the re-
covered individuals (R) generated by Eq. (5). There is also an inclusion
of the environmental contamination where the environment acts as the
reservoir for the disease represented by (𝐸𝑣) as shown in Eq. (6). The
basic model is developed from the traditional SIRV model by modifying
the model to account for environmental contamination of surface and
surrounding air. The susceptible individuals can either be vaccinated at
a rate 𝛾 or be infected with two infection possibilities firstly at rate of
𝛽𝑎 which implies infected but then progress to be asymptomatic and
secondly at rate 𝛽𝑠 which implies infected but then progress to the
symptomatic class. The susceptible class has a recruitment rate 𝛬 and
natural death rate of 𝜇. Also, an individual from the vaccinated class
can progress to infectious class through the rate 𝛼𝑎 and 𝛼𝑠 for asymp-
tomatic and symptomatic infectious classes respectively. Therefore, the
probability of being infected and progress to symptomatic class is 𝜅 and
the probability of progressing to symptomatic class is 𝜅. Individuals
from infectious classes can succumb to the disease with rate 𝜎𝑎 and
𝜎𝑠 for asymptomatic and symptomatic classes, again individuals from
these two classes will recover at a rate 𝜋𝑎 and 𝜋𝑠 respectively. It is
of great importance to note that the infectious classes can transmit
the virus onto the environment at the following rates 𝜔𝑎 and 𝜔𝑠 for
asymptomatic and symptomatic classes. The virus can only survive for
a certain limited period of time in the environment hence we assume
that the virus can die-out at a rate 𝜌. Finally, since we will be simulating
for short time period we assumed that the recoveries do not progress
to be susceptible.

Based on the above descriptions we obtain the following system of
ordinary differential equations to represent the transmission dynamics
of the disease.
𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛾𝑆 − 𝜇𝑆 − 𝛽𝑠𝑆𝐼𝑠 − 𝛽𝑎𝑆𝐼𝑎 − 𝜅𝐸𝑣𝑆 − (1 − 𝜅)𝐸𝑣𝑆 (1)
𝑑𝑉
𝑑𝑡

= 𝛾𝑆 − 𝜇𝑉 − 𝛼𝑠𝑉 𝐼𝑠 − 𝛼𝑎𝑉 𝐼𝑎 (2)
𝑑𝐼𝑠
𝑑𝑡

= 𝛽𝑠𝑆𝐼𝑠 + 𝛼𝑠𝑉 𝐼𝑠 − (𝜎𝑠 + 𝜋𝑠)𝐼𝑠 + 𝜅𝐸𝑣𝑆 (3)
𝑑𝐼𝑎
𝑑𝑡

= 𝛽𝑎𝑆𝐼𝑎 + 𝛼𝑎𝑉 𝐼𝑎 − (𝜎𝑎 + 𝜋𝑎)𝐼𝑎 + (1 − 𝜅)𝐸𝑣𝑆 (4)
𝑑𝑅
𝑑𝑡

= 𝜋𝑎𝐼𝑎 + 𝜋𝑠𝐼𝑠 − 𝜇𝑅 (5)
𝑑𝐸𝑣
𝑑𝑡

= 𝜔𝑎𝐼𝑎 + 𝜔𝑠𝐼𝑠 − 𝜌𝐸𝑣 (6)

where, the total population 𝑁 = 𝑆 + 𝑉 + 𝐼𝑎 + 𝐼𝑠 +𝑅 and 𝐸𝑣 is the viral
load on the environment.

2.2. Limitations of the study

In this section, we discuss the limitations of the study. The main
limitation of the model was that it only captures seasonal effect in-
teraction with the environmental factors. However, there are many
environmental factors influencing the seasonality of the disease from
climate to geospatial factors. Thus, the model parameters considers
these different environmental factors as a collection set of all factors
affecting the viral load directly and indirectly. Again, another limitation
was the testing capacity of different countries and the availability of
procurement of test kits during the onset of the disease. To some
2

extent, this has an influence on the datasets as the number of confirmed T
positive cases strongly depends on the testing capacity of a country.
Furthermore, the baseline data used in this study only spanned less than
two years. Hence, we recommend that future studies should focus on
different levels of environmental factors and consider larger datasets to
gain more insight into the seasonality of the disease.

3. Qualitative analysis

The model was analysed qualitatively to obtain key information
about the parameters under study. Firstly, the fixed point theorem can
be applied to establish the feasibility of solution and the reproduction
number 𝑅0 was computed together with both equilibrium points and
stability analysis.

3.1. Equilibrium points

The equilibrium states were obtained by setting the right hand side
of the formulated model system of differential equations to zero.

• The disease free equilibrium point (DFE) 𝐸∗
0 [

𝛬
𝛾+𝜇 ,

𝛾𝛬
𝜇(𝛾+𝜇) , 0, 0, 0, 0]

which implies that at this level the disease cannot invade the
population.

• The disease equilibrium point 𝐸∗
1 [𝑆

∗, 𝑉 ∗, 𝐼∗𝑠 , 𝐼
∗
𝑎 , 𝑅

∗, 𝐸∗
𝑣 ], which

implies that under these conditions the disease can invade the
population.

.2. Reproduction number

Before we discuss about the reproduction number there is need to
tate the following:

emma 3.2.1. The disease free equilibrium point is locally asymptotically
table when 𝑅0 < 1 and this means the disease cannot spread. When 𝑅0 > 1
hen, the disease equilibrium point is said to be unstable and the disease can
nvade the population.

The effective reproduction 𝑅𝑒 number was calculated using the next
eneration matrix method presented by Tang et al. (2020) and we
btained the following results.

𝑒 = 𝑚𝑎𝑥{𝑅1, 𝑅2}

here

1 =
𝛾𝛬𝛼𝑠 + 𝛬𝜇𝛽𝑠

𝜇(𝛾 + 𝜇)(𝜋𝑠 + 𝜎𝑠)
(7)

and

𝑅2 =
𝛾𝛬𝛼𝑎 + 𝛬𝜇𝛽𝑎

𝜇(𝛾 + 𝜇)(𝜋𝑎 + 𝜎𝑎)
(8)

The linear stability of the disease-free equilibrium point is determined
by the effective reproductive number. The above reproduction numbers
have common parameters like 𝛾, 𝛬, and 𝜇 which are difficult to
control. However, taking a closer look at 𝑅1 the drivers of infection
are parameters for the symptomatic population and the same can
observation is noted in 𝑅2 that the drivers of infection are parameters
from the asymptomatic population. Thus, we can note that there are
two reproduction numbers driving the diseases of two different classes
of the population implying that the larger of the two reproduction
numbers becomes the more effective reproduction number.

3.3. Local stability

The local stability of the disease-free equilibrium point, 𝐸0 is de-
cribed by examining the linearised form of the system at the steady
tate. This is done by computing the Jacobian matrix of the system.

he Jacobian matrix is computed by differentiating each equation in
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the system with respect to the state variables 𝑆, 𝑉 , 𝐼𝑠, 𝐼𝑎, 𝑅, 𝐸𝑣. The
Jacobian matrix at equilibrium point was obtained to be:

𝐉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝛾 − 𝜇 0 −𝛽𝑠𝛬
𝛾+𝜇

−𝛽𝑎𝛬
𝛾+𝜇

0 𝛬
𝛾+𝜇

𝛾 −𝜇 −𝛼𝑠𝛾𝛬
𝜇(𝛾+𝜇)

−𝛼𝑎𝛾𝛬
𝜇(𝛾+𝜇)

0 0

0 0 𝛽𝑠𝛬
𝛾+𝜇

+ 𝛼𝑠𝛾𝛬
𝜇(𝛾+𝜇)

− 𝑑𝑠 0 0 𝜅𝛬
𝛾+𝜇

0 0 0 𝛽𝑎𝛬
𝛾+𝜇

+ 𝛼𝑎𝛾𝛬
𝜇(𝛾+𝜇)

− 𝑑𝑎 0 (1−𝜅)𝛬
𝛾+𝜇

0 0 𝜋𝑠 𝜋𝑎 −𝜇 0
0 0 𝜔𝑠 𝜔𝑎 0 −𝜌

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

The local stability of 𝐸∗
0 is determined based on the signs of the

eigenvalues of the Jacobian matrix 𝐉(𝐸∗
0 ). The disease-free equilibrium

point, 𝐸∗
0 , is said to be locally asymptotically stable if the real parts

of the eigenvalues are all negative, otherwise it is said to be unstable.
Consider the above Jacobian matrix and let 𝛷 be the eigenvalues. Then
we have ∣ 𝐽 −𝛷𝐼 ∣= 0, where 𝐽 is the matrix 𝐉(𝐸∗

0 ) in Eq. (9) and 𝐼 is
a 6 × 6 identity matrix. The eigenvalues are given as:

𝛷1 = −𝜇, 𝛷2 = −𝜇, 𝛷3 = −𝛾 − 𝜇, 𝛷4,5 = ∓
√

𝐷
𝜇(𝛾+𝜇) , and 𝛷6 = −𝜌. where

𝐷 is the discriminant. It follows from Lemma 3.2.1, that the disease-free
equilibrium is locally asymptotically stable when 𝑅𝑒 < 1. In contrast,
f the interventions are not strong enough such that 𝑅{1,2} > 1, then
he disease-free equilibrium becomes unstable and a disease outbreak
ccurs. Thus they are five eigenvalues with negative real parts and
hen𝑅{1,2} > 1, the eigenvalues with positive real parts maybe obtained

or 𝛷4,5 with its governing condition. Then 𝑅𝑒 = 𝑚𝑎𝑥{𝑅1, 𝑅2} < 1 when
s in the close neighbourhood of zero by manifold analysis. Hence, the
isease-free equilibrium is locally asymptotically stable when 𝑅𝑒 < 1.

. Data and methods

.1. Data source and country

The internet is rich with free accessible COVID-19 datasets from
ifferent countries including Zimbabwe, most of these websites and
atabases capture almost similar variables and data values which come
rom similar sources although some differences can exist in a few cases.
ainly in Anon (2021a,b,c,d,e), the datasets capture cumulative cases,

umulative deaths, cumulative recoveries, new cases, new deaths,
ew recoveries and recently includes vaccinated population with the
umber of doses administered per time interval (day/week) (Anon,
021c,d,f). In Anon (2021d), Damette et al. (2021) an interesting
ariable is included which is the mobility of the population, however,
OVID-19 dashboards from websites have enabled researchers to trace
he trends of the pandemic and also to be able to predict future
rends and impact of the diseases on different regions continents and
ountries. For comparison purposes, we only focused on the datasets for
hree interlinked countries which were Botswana, South Africa along
ith Zimbabwe.

Following from Fig. 1, the COVID-19 cases for Botswana exhibits
easonal and fluctuating patterns, this is evident by very low amplitude
aves with small wavelength at the onset of the disease. However,

hese two attributes increase with respect to time. This is highlighted
y the last wave with greater amplitude, greater wavelength, and more
ronounced as compared to the first series of waves. Overall, even
hough our data set was small it exhibited some seasonality features
ence our motivation to include the seasonality effect on our COVID-19
odel.

Fig. 2, in the case of South Africa the COVID-19 trend graph
ndicated a very clear seasonal pattern with all the three waves having
lmost the same wave amplitude and wavelength. While the only
oticeable difference was in the ranges of the waves. The third wave
eems to have lasted longer than the first two waves. In addition, the
larity on the South African COVID-19 daily cases pictorial view can be
3

c

ttributed to rapid testing as compared to the other two neighbouring
ountries.

Fig. 3 shows Zimbabwe COVID-19 daily cases for a period of
eventeen-month since the onset of the virus in the country. The graph
xhibits seasonality patterns with three distinct waves of increasing
mplitude from left to right. Although, we only used data for about
eventeen months the evidence is pointing to the fact that like other
ountries in Zimbabwe COVID-19 cases are seasonal in nature and
ence any COVID-19 mathematical model at the population level
hould incorporate seasonality effect on the dynamics of the disease.
herefore, the presentation of seasonality by datasets from these coun-
ries has motivated us to modify the basic model and include the
easonal effect component. It will be interesting also to note that the
pplication of seasonality index computation and machine learning
ools can be used to prove that seasonality exists in all three countries’
atasets (Mushayi et al., 2021).

.2. Seasonality in data

In brief as observed from Fig. 1, Fig. 2, and Fig. 3 that COVID-
9 daily cases trends revealed the existence of seasonality in different
atasets. Therefore, there are many factors contributing to the sea-
onality patterns of COVID-19. These may include, within-host fac-
ors like diet, viral dynamics evolution, and immunology. Again the
etween-host interactions can affect seasonality for example humans
nteract at different levels like cultural level, socio-economic level,
nd lifestyle level. Environmental factors like climate, temperature,
errain, rainfall, radiation, and humidity have been established to affect
easonality (Kronfeld-Schor et al., 2021). Other factors that can affect
easonality are policies that have an impact on human behaviour. Poli-
ies such as lockdown were implemented when cases are skyrocketing
ased on advice by the health professionals, hence this might have
ontributed to seasonality in the datasets (Anon, 2021h,i; Magocha,
021).

In some cases, data collection strategies deployed by different coun-
ries might have led to the scaling down of the seasonal magnitude
n the datasets. Since daily testing statistics revealed that the number
f individuals who tested positive for the virus was increasing with
espect to a time period where the amplitude was relatively high. On
he other hand, the issue of migration of people from one point to the
ther leads to a high number of cases. Usually, migration is a seasonal
omponent which explains the high amplitude between November and
ebruary of the following year as human mobility between regions
as influenced by the festive holiday and this was common in all

he 3 countries (Zimbabwe, South Africa, and Botswana). The first
ow amplitudes (especially in the case of Botswana Fig. 1) could be
ue to quick action but policy enforcers in enforcing the lockdown,
esting, quarantine, and closing borders but it is clear from the graphs
ig. 1 that the cases were rising at the time period between May and
ugust as well as November and February. During May–September,
ccording to Fig. 2 and Fig. 3 significant amplitude wave could be
oticed may be due to the correlation of the disease with the cold
inter weather (noting that there may be other confounding factors

hat caused the high amplitude) together with the November–February
ave likely caused by migration of people though it will be summer.
he focus of the study was to establish the existence of seasonality
atterns in COVID-19 data from the three countries and hence develop
mathematical model that captures the seasonal component.

. Modified model

.1. Seasonal effect

The seasonal effect was introduced to this modelling by considering
he theoretical approach of making use of trigonometry function in this

ase we make use of sine. In turn, this will induce a forced seasonality



Physics and Chemistry of the Earth 127 (2022) 103167M. Ndlovu et al.
Fig. 1. Botswana COVID-19 daily cases trends from February 2020 to August 2021.
Fig. 2. South Africa COVID-19 daily cases trends from February 2020 to August 2021.
Fig. 3. Zimbabwe COVID-19 daily cases trends from February 2020 to August 2021.
effect in the mathematical model structure. Therefore, this will ensure
that the model exhibits rise and fall that are not of a fixed period.
Such seasonal fluctuations are assumed to be due to seasonality factors
discussed and are often related to the COVID-19 cycle; their period
usually extends beyond a single year, and the fluctuations are usually of
at least two years (Anon, 2021b; Guangbo et al., 2020; Anon, 2021g).

5.2. Seasonal scaling effect of transmission rate

Many forecasting techniques have been widely used to fit model into
dataset or for parameter estimating which presents an opportunity and
novelty for this study to apply digital process signalling techniques in
scaling of the transmission rate. Since we identified profiles of seasonal-
ity in Zimbabwe COVID-19 datasets we modified the transmission rate
4

to account for seasonality. Thus by making use of the following simple
difference equation:

𝑦(𝑛) = 1
3
(𝑥[𝑛 − 1] + 𝑥[𝑛] + 𝑥[𝑛 + 1]) (10)

And this equation is known as the moving average filter. Hence, in
MatLab we transformed this equation to

𝑦(𝑧) = 1
3
(𝑧)

[

𝑧−1 + 1 + 𝑧1
]

= 1
3
(𝑧)

[ 1
𝑧
+ 1 + 𝑧

]

= 𝑧
3

[

1 + 𝑧 + 𝑧2

𝑧

]

(11)

Then this gives us the numerator coefficients, num (1 1 1) times 1
3

and the denominator coefficient given as, den (1). Because the trans-
mission rate is different from one interval to the other for example if we
compared transmission rate between a lockdown and a period without a
lockdown we established fluctuations of the transmission rates. Hence,
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(

Table 1
Table with model parameters values.

Parameter Value Source

𝛬 0.0342 Mushayabasa et al. (2020)
𝛾 0.00985 Anon (2021f)
𝜇 0.0342 Mushayabasa et al. (2020)
𝛽𝑎 [0.183–0.524] Fitted
𝛽𝑠 [0.183–0.524] Fitted
𝜅 0.5363 Estimated
𝛼𝑎 , 𝛼𝑠 0.0002 Anon (2021a)
𝜎𝑎 , 𝜎𝑠 [0.0384–0.0611] 0.03565 Kronfeld-Schor et al. (2021)
𝜋𝑎 , 𝜋𝑠 0.07071 Estimated
𝜔𝑎 , 𝜔𝑠 [0.4–0.5] Estimated
𝜌 0.5 Estimated

to modify further we apply the process signalling technique by letting
the new transmission rate 𝛽 to be periodic and also dependent on time
𝑡) then 𝛽 = 𝛽𝑖 ∗ sin(𝑡) for 𝑖 = {𝑎, 𝑏}. Due to uncertainty on the

magnitude of the disease we introduce randomness by applying the
Gaussian distribution 𝑛. Therefore, we obtain the filtered transmission
rate to be

𝛽𝑛 = 𝚏𝚒𝚕𝚝𝚎𝚛(𝑛𝑢𝑚, 𝑑𝑒𝑛, 𝛽) (12)

therefore, this equation (eqn 12) was used to factor seasonality into the
model system.

6. Simulation results

In this section of the paper, we present the numerical values used
in the running of simulation together with simulation graphs in or-
der to sense the behaviour of disease after certain parameters in the
formulated model were modified to incorporate the seasonal effect. In
the end, we present the results from comparing numerical values from
the non-seasonal model, a seasonal model with the actual constructed
baseline data (monthly averages Zimbabwe COVID-19 dataset).

6.1. Model parameters

A model parameter is a configuration variable that is internal to
the model and whose value can be estimated from data. The following
Table 1 shows values of parameters together with the source.

Most of these values were obtained from other researchers, and
other values were assumed. The estimated parameters were varied
in order to obtain different models simulations. It is critical to vary
parametric values so as to clearly understand the behaviour of the
model under different scenarios.

6.2. Zimbabwe COVID-19 dynamics without seasonality effect

The following Fig. 4 shows the simulations from a model without
any modifications.

The susceptible population decreases rapidly to a minimum tuning
point within the first five months and then levels off to a limit for the
remaining number of months. Again, the infected populations charac-
terise almost the same time series patterns that is a rapid increase of
the infected populations to a maximum within the first two months and
then followed by a decrease for the next three months after which we
observed a steady behaviour for the remainder of the months. However,
the vaccinated shows some fixed growth to limit then it remains at a
constant for the remaining months.

This type of graph as the one shown in Fig. 4 represents simulations
from classical epidemiological models. Surely from this graph Fig. 4,
one can observe that the patterns are far from suggesting or accounting
for any seasonality behaviour of the disease. Even though mathemati-
cal models are powerful tools in unlocking our understanding of the
progression dynamics of pandemic much needs to be done in terms
5

of their correct use to better represent different factors of the disease.
Finally, the advent of a dashboard and free datasets should also enable
researchers to integrate and validate their models with baseline data.

6.3. Zimbabwe COVID-19 dynamics with seasonality effect

The following Fig. 5 shows the simulations from a model with
seasonal effect modifications.

In running the simulation, we assumed slightly higher initial con-
ditions for the infected populations and this was because of the fact
that during the onset of the disease in the country, the world was still
perfecting its testing tools which were very limited in most developing
countries hence we assume that the actually observed datasets might
have been lower than the actual number of cases in the population.
However, the infected population decreases within the first month then
the figures were maintained at lower levels. On the other hand, the first
clear wave had the peak on month ten and the next peak was observed
at month fifteen these two months conceded with December 2020 and
May 2021 respectively. Again, the next peak after the first two peaks
was observed on month twenty-two which concedes with December
2021, these results suggest that the 4th wave is highly likely to occur
and have a peak during the month of December 2021. Furthermore,
this seasonal nature of the disease is likely to continue to occur for the
coming years up-until new disease management strategies are designed
or new vaccines with high efficacy rates are developed.

6.4. A comparison of Zimbabwe COVID-19 dynamics with and without
seasonality effect

The following graph in Fig. 6, shows the simulations from both
seasonal model and non-seasonal model together with the actual Zim-
babwe COVID-19 cases.

For comparison, we extracted total infected population data points
from the seasonal and non-seasonal models for the first seventeen
months and complied them together with the Zimbabwe COVID-19
daily cases data categorised with monthly means to create seventeen
data points for comparison. Hence, to better understand the relation-
ship between these datasets we computed the correlation between
actual data and extracted data from the models. Fig. 6 indicates the
existence of a correlation between the seasonal model graph and the
actual Zimbabwe COVID-19 cases datasets. Therefore, we computed
the correlation for these datasets and established a correlation of .746∗∗
between the model with seasonal effect and the baseline dataset with
correlation significant at .001 level. On the other hand, there was no
significant correlation between the model with non-seasonality and the
baseline dataset. Though much work needs to be done to calibrate the
model to improve its predictive scale, however one important thing
has been highlighted by the results i.e. the seasonal model is better in
modelling COVID-19 as compared to a model without the seasonality
effect since we established that this pandemic is seasonal by nature.

7. Conclusion

Zimbabwe has experienced three COVID-19 waves and the pan-
demic has spread widely or rapidly enough to show seasonality amongst
the general population. SARS-CoV-2 in Zimbabwe has infected over
120 thousand people at the time of writing these lines, hence it is
essential to understand and project the transmission pattern of COVID-
19. Coupling available data and numerical simulation of mathematical
models can enable us to observe possibilities of seasonality and how
seasonality patterns can impact Zimbabwe’s social and economic pro-
gression. Again these tools can provide us with a highlight of the
outbreaks of each wave occurrences and sometimes predict the burden
of the diseases on in wave. This study qualitatively and quantitatively
analysed the effect of seasonality in the progression dynamics of

COVID-19 in Zimbabwe. We established that COVID-19 in South Africa
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Fig. 4. Infected, susceptible and vaccinated classes from a non-seasonal model.
Fig. 5. Infected classes from a seasonal model.
Fig. 6. A graph of seasonal model, non-seasonal model and actual Zimbabwe COVID-19 monthly reported cases.
Zimbabwe and Botswana exhibited COVID-19 seasonality infectivity
which was more pronounced in the first two countries. On the other
hand, the numerical simulation indicates that there is no relationship
between patterns of non-seasonal model and actual data but they exist
6

a significant correlation of .746 at 𝛼 = .001 level between a seasonal
model and actual data. Of great significance, we found out that in the
presence of a lower vaccination rate it is impossible to eradicate the
disease hence more vaccines with high efficacy rates might provide a
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solution to this global challenge. Therefore, we recommend that the
seasonality of the disease should be taken to account in the future
planning of programmes and calendar year. For example, schools and
universities should restructure their academic year calendar to cater for
COVID-19 seasonality and reduce time lost due to lockdowns. These
findings have important implications on strategic planning especially
for control and prevention of COVID-19 by the Zimbabwe COVID-
19 task force team. Again this knowledge might be helpful in the
design of indigenous health systems and technology which consider the
seasonality effect in our context. Finally, the findings predicted that a
fourth wave is likely to occur however it should be less pronounced as
compared to the third wave.

Although, our results are construed in the framework of several
study limitations. The seasonality incorporated in the modified SVIR
model is an empirical formula, is the major innovation of this study
to apply moving averages, stochastic, and signal processing techniques
to transform an epidemiological model to produce seasonality pat-
terns. Here we provide a general framework on how to introduce
seasonality into epidemiological models. Thus, the impact of incor-
porating this seasonality effect into the model greatly improved the
reliability of model. Furthermore, the modified SVIR model in this
paper is limited to the accuracy of forecasting techniques and mov-
ing averages formulas used. This seasonality effect introduced can be
subdivided into environmental and non-environmental seasonal effects
and factored into the model to assess the new trends of the dis-
ease. To conclude we suggest an effective multi-discipline collaboration
among mathematicians, statisticians, epidemiologists, environmental
scientists, meteorologists, sociologists, etc. is essential to fully establish
all the COVID-19 seasonality mechanisms.
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