

FACULTY OF NATURAL RESOURCES MANAGEMENT AND AGRICULTURE DEPARTMENT OF ANIMAL SCIENCE

BACHELOR OF SCIENCE HONOURS DEGREE IN ANIMAL SCIENCE

Introduction to Genetics (LAS 1201) SEMESTER 2 EXAMINATION

June 2023

Time Allowed: 3 hours

Special Requirements: Chi-Square Table

Examiner's Name: K. Mafunga

Instructions to Candidates:

- 1. The paper consists of six questions, answer <u>ALL</u> questions in **Section A** and <u>ANY TWO</u> in **Section B**.
- 2. Marks for each question are shown in brackets. Where a question has subdivisions, the marks for each subdivision are given.
- 3. Illustrate your answer, where applicable, with large clearly labelled diagrams.

MARK ALLOCATION

QUESTION	MARKS
SECTION A	60
SECTION B	40
TOTAL ATTAINABLE MARKS	100

This paper consists of three printed pages including this one.

Copyright: Gwanda State University, 2023

SECTION A: ANSWER <u>ALL</u> QUESTIONS IN THIS SECTION

Question 1

a. Differentiate the following terms:

	i.	Metacentric and telocentric chromosomes	[2 marks]
	ii.	Deletion and duplication in chromosome mutation	[2 marks]
	iii.	Euploidy and aneuploidy	[2 marks]
	iv.	Autopolyploidy and allopolyploidy	[2 marks]
	V.	X-Y and Z-W sex determination system.	[2 marks]
b.	b. State Mendel's laws of segregation and independent assortment.		[2 marks]
c.	Outlin	e the four traditional subdivisions of genetics.	[8 Marks]

Question 2

- a. When a plant of a genotype TtRr is self-fertilised and produces 1200 seeds, how many of these seeds will produce plants of a similar genotype to that of the parent (TtRr)? Show all working. [10 marks]
- b. A sire's four locus genotype is NnQqRRTt and a dam's genotype is NNQqRRTt. Considering these four loci, how many unique gametes can:
 - i) The sire produce? [3 marks] ii) The dam produce? [3 marks]
 - iii) How many unique zygotes can be produced from the mating of the sire and dam?

[4 marks]

Question 3

Write short notes on the following, giving examples in each case:

i.	Co-dominance	[5 marks]
ii.	Sex-influenced inheritance	[5 marks]
iii.	Sex-limited inheritance	[5 marks]
iv.	Incomplete dominance.	[5 marks]

SECTION B: ANSWER ANY TWO QUESTIONS IN THIS SECTION

Question 4

- a. State the five conditions that must be met for a population to remain in Hardy-Weinberg equilibrium.[5 marks]
- b. Discuss in detail the forces that may lead to a change in gene and genotype frequencies in a population.

marks]

Question 5

a. Define the term genetic engineering.

[2 marks]

- b. Discuss genetic engineering under the following headings:
 - i. Potential benefits of genetic engineering in crop and livestock farming. [8 marks]
 - ii. Potential drawbacks of genetic engineering in agriculture. [10

Question 6

In Pea plants, round seeds (R) are dominant to wrinkled (r), and yellow seeds (Y) are dominant to green (y). The cross RrYy x RrYy, produced:

- 315 Round, Yellow seed;
- 108 Round, Green seed;
- 101 Wrinkled, Yellow seed; and
- 32 Wrinkled, Green seed.

Test the data to determine if it fits the 9:3:3:1 ratio. Use $\alpha = 0.05$ [20 marks]

END OF QUESTION PAPER

Copyright: Gwanda State University, 2023