

GWANDA STATE UNIVERSITY

FACULTY OF COMPUTATIONAL SCIENCES

ANALYSIS 1

SMS 1113

This examination paper consists of 5 pages

INSTRUCTIONS

This paper consists of six questions. Answer all questions in section A and answer any TWO questions in section B.

Use of calculator is permissible

Page 1 of 5 pages

SECTION A: Answer ALL questions [40].

show that f is both continuous and differentiable at the origin. $[8]$

(c) Let $f(x) = x^2$ be a function defined on a closed bounded interval [0, 1]. Show that $f(x)$ is Riemann intergrable on [0, 1]. [6]

SECTION B (60 marks)

Candidates may attempt THREE questions being careful to number them B? to B?.

\n- **B3.** (a) Let
$$
a_1 = 1
$$
, $a_{n+1} = \frac{2}{3+a_n^2}$.
\n- (i) Show that $\frac{1}{2} \le a_n < 1$ and $|a_{n+1} - a_n| < \frac{4}{9} |a_n - a_{n-1}|$, $\forall n > 1$.
\n- (j) Show that this sequence is Cauchy and deduce that it converges to a fixed point of the function $f(x) = \frac{1}{3}(2-x^3)$.
\n- (k) State the Principle of Monotone Bounded Convergent sequences and prove for monotone increasing sequences only. [10]
\n- (c) Verify the Nested Interval Theorem for the sequence $I_n = \left\{ \left[0, \frac{1}{n} \right] \right\}$.
\n- **B4.** (a) Let f be a continuous function on a closed and bounded interval domain $[a, b]$. Prove that $f(x)$ is uniformly continuous on $[a, b]$ [Hint: you may assume some standard results].
\n- (b) Read the sketch proof of Rolle's theorem and answer questions that follow. Sketch **Proof:** If $f(x)$ is a constant on $[a, b]$, then $f'(\xi) = 0$, $\forall \xi \in (a, b)$. Now, consider $f(x)$ which is not a constant on $[a, b]$, it follows that $f(x)$ is bounded on $[a, b]$, and it attains its minimum and maximum values m and M respectively on $[a, b]$. Moreover $m \neq M$. If $M \neq f(a) = f(b)$, then $f(a)$ and $f(b)$ are less than M . Since M is the maximum, there exists a point $\xi \in (a, b) : f(\xi) = M$. Since $f(\xi) \leq b \leq M$, $\forall x \in [a, b]$. Hence $f'(\xi) = 0$.
\n- (i) State Rolle's theorem.
\

B5. (a) Let A be a non empty subset of real numbers which is bounded above. Prove that a real number a is a supremum of the set A if and only if (i) a is an upper bound of A and (ii) $\forall \epsilon > 0, \ \exists a_{\epsilon} \in A : a_{\epsilon} > a - \epsilon.$ [10] (b) It is well known in elementary real analysis that, $\forall b \in \mathbb{R}^+, \exists ! a \in \mathbb{R}^+ : a^2 = b$ ". Read the following sketch proof of this result and answer the questions that follow. Sketch Proof: Define $L = \{x \in \mathbb{R} : 0 \le x \text{ and } x^2 < b\}$ and $M = \{x \in \mathbb{R} : 0 \le x \text{ and } x^2 < b\}$ $\mathbb{R}: 0 \leq x$ and $x^2 > b$. L and M are non empty sets. Now, $\forall l \in L$, $\forall m \in M$ we have $0 \leq l^2 < b < m^2$. So $l^2 < m^2$ and we have $l < m$. Hence $\exists a : a = \sup L$. Now $\forall l \in L, n > \frac{2l+1}{l}$ $\frac{2v+1}{b-l^2}$, implies that $(l+1)$ 1 \overline{n} $)^{2} < b$. Hence $a^{2} \geq b$. Similarly, by using the argument that $\forall m \in M, n > \frac{2m+1}{2m}$ $m^2 - b$, implies that $(m - 1)$ n $)^2 > b$, we can conclude that $a^2 \leq b$. So $a^2 = b$. (i) Justify the fact that L and M are non empty sets. $[2]$ (ii) Which property has been used to conclude that $l^2 < m^2$? Further, what arguments can we use to conclude that $l < m$? [2] (iii) What conclusion can you make from the fact that $\forall l \in L, \forall m \in M, l$ m ? (2). (iv) State and write down the axiom that has been used to reach the fact that $\exists a : a = \sup L.$ [2] (v) What conclusion can you draw from the fact that $\forall l \in L, (l + \frac{1}{\sqrt{l}})$ \overline{n} $)^{2} < b$? [2] (vi) State the property that has been used to come to a conclusion that $a^2 = b$. [2] (c) State and prove the Rational Density Theorem. [8] **B6.** (a) Prove that a bounded $f(x)$ is Riemann integrable on [a, b] if and only if given $\epsilon > 0$ there is a partition P of [a, b] such that $U(P, f) - L(P, f) < \epsilon$. [10] (b) It is well known in elementary analysis that "if f and g are real valued functions on a closed and bounded interval $[a, b]$ with $g'(x) \ge 0$ then there exists $c \in [a, b]$: \int^b a $f(x)g(x)dx = f(c)\int^{b}$ a $g(x)dx$ ". Read the sketch proof of the aforementioned theorem and answer questions that follow. **Sketch Proof:** If $g(x) = 0$ then the proof is trivial. So lets consider $g(x) > 0$, it follows that $f(x)$ attains its minimum and maximum values m and M respectively such that $m \le f(x) \le M$. So $mg(x) \le f(x)g(x) \le Mg(x)$. Now $\int_a^b mg(x)dx \le$ $\int_a^b f(x)g(x)dx \leq \int_a^b Mg(x)dx$ $\implies m \int_a^b g(x)dx \leq \int_a^b f(x)g(x)dx \leq M \int_a^b g(x)dx.$ Hence $m \leq$ $\int_a^b f(x)g(x)dx$ $\int_a^b g(x)dx$ $\leq M$. (i) State standard results that has been used to reach the conclusion that there

exists m and M such that $m \le f(x) \le M$. [2]

$$
c \in [a, b]: \int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx?
$$
 [2]

(c) State and prove the fundamental theorem of integral calculus. [12]

END OF QUESTION PAPER