GWANDA STATE UNIVERSITY

Faculty of Computational Sciences DEPARTMENT OF MATHEMATICS AND STATISTICS PROBABILITY THEORY 1

SMS 1112

Examination Paper

NOVEMBER 2023
This examination paper consists of 3 printed pages
Time Allowed: 3 hours
Total Marks: 100
Examiner's Name: Mr. E. Utete
INSTRUCTIONS
Answer ALL questions in Section A and ANY THREE questions in Section B

ADDITIONAL REQUIREMENTS

Scientific calculator
Graph papers
Statistical Tables

SECTION A : Answer ALL Questions 40 marks

A1 If the last digit of a mineral ore weight measurement is equally likely to be any of the digits 0 through 9 ,
(a) What is the probability that the last digit is 0 ?
(b) What is the probability that the last digit is 3 or 7 ?
(c) What is the probability that the last digit is greater than or equal to 5 ?

A2 Suppose A and B are mutually exclusive events. Construct a Venn diagram that contains the three events A, B, and C such that $P(A \mid C)=1$ and $P(B \mid C)=0 \quad[5]$

A3 (a) Explain the meaning of "lack of memory property of an exponential random variable"
(b) Given the following Cumulative Distribution Function.

$$
F(x)=\left\{\begin{array}{lr}
0, & x<-2 \\
0.25 x+0.5, & -2 \leq x<1 \\
0.5 x+0.25, & 1 \leq x<1.5 \\
1, & 1.5 \leq x
\end{array}\right.
$$

i. Find the probability distribution function.
ii. Make a sketch of the probability distribution function.
iii. Find $P(-0.5 \leq x<1.25)$
iv. $E(X)$
v. $E\left(X^{2}\right)$
vi. $\operatorname{Var}(X)$

SECTION B : Answer THREE QUESTIONS only : 60 marks

B4 (a) Given the following probability mass functions,

$$
f(x)=\frac{2 x+1}{25}, x=0,1,2,3,4
$$

Find
i. $P(2 \leq X<4)$
ii. $E(X)$
iii. $E\left(X^{2}\right)$
iv. $\operatorname{Var}(X)$
(b) The number of failures of a mine water pump follows a Poisson random variable with a mean of 0.02 failure per hour.
i. What is the probability that the water pump does not fail in an 8 -hour shift?
ii. What is the probability of at least one failure in a 24 -hour day?

B5 The lifetime of a mechanical assembly in a vibration test is exponentially distributed with a mean of 400 hours.
(a) What is the probability that an assembly on test fails in less than 100 hours? [4]
(b) What is the probability that an assembly on test fails between 50 and 100 hours?
(c) What is the probability that an assembly operates for more than 500 hours before failure?
(d) If an assembly has been on test for 400 hours without a failure, what is the probability of a failure in the next 100 hours?

B6 (a) State four properties of a Normal Distribution.
(b) The line width of for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of $0.05 \mathrm{mi}-$ crometer.
i. What is the probability that a line width is greater than 0.62 micrometer?
ii. What is the probability that a line width is between 0.47 and 0.63 micrometer?
iii. Find the minimum value of line width of semiconductor that contain the least 90% of the sample?
B7 (a) Determine the value of c such that the function $f(x, y)=c x^{2} y$ for $0<x<3$ and $0<y<2$ satisfies the properties of a joint probability density function.
(b) The percentage of people given an antirheumatoid medication who suffer severe, moderate, or minor side effects are 10,20 , and 70%, respectively. Assume that people react independently and that 20 people are given the medication. Determine the following:
i. The probability that 2,4 , and 14 people will suffer severe, moderate, or minor side effects, respectively
ii. The probability that no one will suffer severe side effects
iii. What is the conditional probability distribution of the number of people who suffer severe side effects given that 19 suffer minor side effects?
iv. What is the conditional mean of the number of people who suffer severe side effects given that 19 suffer minor side effects?

