

GWANDA STATE UNIVERSITY

Faculty of Computational Sciences DEPARTMENT OF MATHEMATICS AND STATISTICS PROBABILITY THEORY 1

SMS 1112

Examination Paper

NOVEMBER 2023

This examination paper consists of 3 printed pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. E. Utete

INSTRUCTIONS

Answer ALL questions in Section A and ANY THREE questions in Section B

ADDITIONAL REQUIREMENTS

Scientific calculator

Graph papers

Statistical Tables

Page 1 of 3

Copyright: Gwanda State University, 2023

SECTION A: Answer ALL Questions 40 marks

$\mathbf{A1}$	If the last	digit of	a minera	l ore	weight	measurement	is e	equally	likely 1	to be	any	of 1	the
	digits 0 th	rough 9),										

- (a) What is the probability that the last digit is 0? [2]
- (b) What is the probability that the last digit is 3 or 7? [2]
- (c) What is the probability that the last digit is greater than or equal to 5? [2]
- **A2** Suppose A and B are mutually exclusive events. Construct a Venn diagram that contains the three events A, B, and C such that $P(A \mid C) = 1$ and $P(B \mid C) = 0$ [5]
- A3 (a) Explain the meaning of "lack of memory property of an exponential random variable" [4]
 - (b) Given the following Cumulative Distribution Function.

$$F(x) = \begin{cases} 0, & x < -2\\ 0.25x + 0.5, & -2 \le x < 1\\ 0.5x + 0.25, & 1 \le x < 1.5\\ 1, & 1.5 \le x \end{cases}$$

- i. Find the probability distribution function. [6]
- ii. Make a sketch of the probability distribution function. [4]
- iii. Find $P(-0.5 \le x < 1.25)$ [4]
- iv. E(X)
- v. $E(X^2)$
- vi. Var(X) [3]

SECTION B: Answer THREE QUESTIONS only: 60 marks

B4 (a) Given the following probability mass functions,

$$f(x) = \frac{2x+1}{25}, x = 0, 1, 2, 3, 4$$

Find

i.
$$P(2 \le X < 4)$$

ii.
$$E(X)$$

iii.
$$E(X^2)$$

iv.
$$Var(X)$$
 [2]

- (b) The number of failures of a mine water pump follows a Poisson random variable with a mean of 0.02 failure per hour.
 - i. What is the probability that the water pump does not fail in an 8-hour shift?

[4]

		ii. What is the probability of at least one failure in a 24-hour day? [5]
B5		lifetime of a mechanical assembly in a vibration test is exponentially distributed a mean of 400 hours.
	(b)	What is the probability that an assembly on test fails in less than 100 hours? [4] What is the probability that an assembly on test fails between 50 and 100 hours? [4] What is the probability that an assembly operates for more than 500 hours before
	. ,	failure? [6]
	(a)	If an assembly has been on test for 400 hours without a failure, what is the probability of a failure in the next 100 hours? [6]
B6	(a)	State four properties of a Normal Distribution. [4]
	(b)	The line width of for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer.
		i. What is the probability that a line width is greater than 0.62 micrometer? [5]
		ii. What is the probability that a line width is between 0.47 and 0.63 micrometer? [5]
		iii. Find the minimum value of line width of semiconductor that contain the least 90% of the sample? [6]
B7	(a)	Determine the value of c such that the function $f(x,y) = cx^2y$ for $0 < x < 3$ and $0 < y < 2$ satisfies the properties of a joint probability density function. [5]
	(b)	The percentage of people given an antirheumatoid medication who suffer severe, moderate, or minor side effects are 10, 20, and 70%, respectively. Assume that people react independently and that 20 people are given the medication. Determine the following:
		i. The probability that 2, 4, and 14 people will suffer severe, moderate, or minor side effects, respectively [3]
		ii. The probability that no one will suffer severe side effects [3]
		iii. What is the conditional probability distribution of the number of people who suffer severe side effects given that 19 suffer minor side effects? [5]
		iv. What is the conditional mean of the number of people who suffer severe side effects given that 19 suffer minor side effects? [4]