

GWANDA STATE UNIVERSITY

 FACULTY OF COMPUTATIONAL SCIENCES
LINEAR MATHEMATICS 1

SMS 1111

This examination paper consists of 4 pages
Date:
SEPTEMBER 2023
Total Marks: 100

Time:
2 hours
Examiner's Name:
Ms B. Kwirira
INSTRUCTIONS

This paper consists of nine questions. Answer all questions in section A and answer any TWO questions in section B.
Use of calculator is permissible

SECTION A: Answer ALL questions [40].

A1. (a) Show that if $z_{1}, z_{2} \in \mathbb{C}$, then $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2}$.
(b) Given that $z=x+i y$, express the equation $2 x+y=5$ in terms of z and \bar{z}.

A2. (a) Find the inverse of $\mathbf{A}=\left(\begin{array}{ccc}2 & 3 & -4 \\ 0 & -4 & 2 \\ 1 & -1 & 5\end{array}\right)$.

A3. (a) Let $f(x)=x^{5}-11 x^{3}-26 x^{2}+48 x+144$. Given that $x=-2+2 i$ and $x=-2$ are roots of $f(x)$, find all the other roots of $f(x)$ and write $f(x)$ as a product of irreducible r eal quadratic and linear functions.

A4. Given $\mathbf{A}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}, \mathbf{B}=2 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{C}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$, find the magnitudes of (i) $\mathbf{A}+\mathbf{B}+\mathbf{C}$ and (ii) $2 \mathbf{A}-2 \mathbf{B}-5 \mathbf{C}$.

A5. (a) Explain when is the equation exact?
(b) Solve the equation

$$
\left.(1-\sin \mathbf{x} \boldsymbol{\operatorname { t a n }} \mathbf{y}) d y+\left(\operatorname{cosesec}^{2} y\right) d y=0\right)
$$

SECTION B (60 marks)

Candidates may attempt THREE questions being careful to number them B? to B?.

B6. (a) Solve the equation $z^{2}+(2 i-3) z+5-i=0$, where $z \in \mathbb{C}$.
(b) By writing $(-1+i)$ in polar form, show that $(-1+i)^{7}=-8(1+i)$.
(i) Let A be an invertible square matrix. Prove that $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
(ii) Prove that, for any matrices A, B and C, the following holds for addition $A+(B+C)=(A+B)+C$.
(c) Given that

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \tag{5}\\
6 \\
7
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
-1 \\
8 \\
-4
\end{array}\right]
$$

. Calculate $4 \mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}$

B7. (a) For which values of α and β does the following system have a unique solution?

$$
\begin{aligned}
2 x+y+\alpha z & =\beta \\
2 x-\alpha y+5 z & =\beta \\
x-y+\alpha z & =1 .
\end{aligned}
$$

(b) Solve the following system of linear equations using Gauss elimination

$$
\begin{align*}
x+2 y+2 z & =2 \\
3 x-2 y-z & =5 \\
2 x-5 y+3 z & =-4 \\
x+4 y+6 z & =0 \tag{15}
\end{align*}
$$

B8. (a) Show that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ for any $z_{1}, z_{2} \in \mathbb{C}$.
(b) Solve $x y^{\prime}+4 y=x^{6}$
(c) Solve $y^{\prime}-\frac{y}{x}=\frac{5}{2} x^{2} y^{3}$
(d) Let $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-6 \\ 7 \\ 5\end{array}\right]$ be vectors in \mathbb{R}^{3}. Express the vector
$\mathbf{v}=\left[\begin{array}{c}-1 \\ 1 \\ 10\end{array}\right]$ as a linear combination $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$.

B9. (a) Given that $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 4\end{array}\right]$.
(i) Calculate $A^{t} A$ and what type of matrix is $A^{t} A$?
(ii) Does A^{t} and A commute?
(b) Solve $y^{\prime \prime}+3 y^{\prime}-10 y=0$
(c) Find the general solution for $y^{\prime \prime}-6 y^{\prime}+9 y=0$
(d) A square matrix P is idempotent if $P^{2}=P$.
(i) Suppose P is a square matrix of order m and let I be the $m \times m$ identity matrix. Prove that them matrix $I-P$ is an idempotent matrix.
(ii) Assume that P is an $m \times m$ nonzero idempotent matrix. Find all integers k such that the matrix $I-k P$ is idempotent.

