

GWANDA STATE UNIVERSITY

FACULTY OF ENGINEERING AND ENVIRONMENT

DEPARTMENT OF METALLURGICAL ENGINEERING

PARTICULATE SYSTEMS

EMR 5201/EMR 2101

Part V Second Semester Examination Paper

June 2023

This examination paper consists of 4 printed pages

Time Allowed: 3 hours

Total Marks: 100

INSTRUCTIONS

- 1. Answer ALL questions in Section A and any TWO from Section B
- 2. Each question carries 25 marks
- 3. Use of calculators is permissible

Additional Requirements

- 1. Calculator
- 2. Graph paper

MARK ALLOCATION

Section A	50 Marks
Section B	50 Marks
Part Marks	As shown in each part question
Total Attainable	100

Page 1 of 5

Copyright: Gwanda State University, 2022

SECTION A (50 MARKS)

ANSWER ALL QUESTIONS

Question A1

- a) Explain how sieve analysis is used in determining the particle size of gold ore [6]
- b) Using an example of a metallurgical process, describe how a drum filter operates [5]
- c) Give three differences and three similarities between deep bed filtration and filtration with cake formation [6]
- d) Calculate the upper limit of particle diameter, x_{max}, as a function of particle density ρ_p for gravity sedimentation in the Stokes' law regime. Plot the results as x_{max} versus ρ_p over the range 0 ≤ ρ_p ≤ 8000 kg/m³ for settling in water and in air at ambient conditions. Assume that the particles are spherical and that Stokes' law holds for Re_p ≤ 0:3. [8]

Question A2

(a)			
	size.	[5]	
(b)	With the aid of diagrams explain the following		
i.	Martin's diameter	[3]	
ii.	Feret's diameter	[3]	
(c)	Determine the sphericity of a particle which has a surface area of 20 mm^2 and volume of		
	4 mm^3 .	[5]	

- (d) A sphere of diameter 10 mm and density 7700 kg/m³ falls under gravity at terminal conditions through a liquid of density 900 kg/m³ in a tube of diameter 12 mm. The measured terminal velocity of the particle is 1.6 mm/s. Calculate:
 - i. Viscosity of the fluid.

Page 2 of 4 Copyright: Gwanda State University, 2022

EMR5201/ EMR 2101 Particulate systems

[4]

SECTION B (50 MARKS)

ANSWER ANY TWO QUESTIONS

Question B1

- (a) Explain the effect of particle shape on the following properties of particulate solids.
 - i. Packing [3] ii. Flowability [3]
- ii.Flowability[3](b) Describe how density and viscosity affect the terminal velocity of particles[4]
- (c) Compare and contrast sprouted and bubbling fluidisation. Explain one application for each fluidisation [10]
- (d) Coal particles having a diameter of 0.24 mm are fluidised using air. The particles have a shape factor of 0.79. The air is injected at a pressure of 3 atm and at a temperature of 25 °C. The air has a viscosity of 1.845 x 10⁻⁵ kg/ms and a molecular weight of 28.97. The voidage of the bed at minimum fluidiation is 0.42. Calculate the minimum fluidisation velocity. [5]

Question B2

- (a) Explain four factors affecting cake formation during filtration [8]
 (b) You are a metallurgist drying coal fines using a fluidised bed reactor. Explain why it is important to determine the following

 Point of incipient fluidisation [4]
 Minimum fluidisation velocity of the coal fines. [3]

 (c) The screen analysis below is of crushed quartz. The density of the particles is 2650 kg/m³ whereas the shape factors are = 0.8 and φ_s = 0.571. Plot graphs to show
 - i. Cumulative fraction larger than D_{pi} [6]

Page 3 of 4 Copyright: Gwanda State University, 2022

i	Mesh	Screen opening, D _{pi} ,	Mass fraction
		(mm)	
14	4	4.699	0
13	6	3.327	0.0251
12	8	2.362	0.1250
11	10	1.651	0.3207
10	14	1.168	0.2570
9	20	0.833	0.1590
8	28	0.589	0.0538
7	35	0.417	0.021
6	48	0.295	0.0102
5	65	0.208	0.0077
4	100	0.147	0.0058
3	150	0.104	0.0041
2	200	0.074	0.0031
1	pan	-	0.0075

Question B3

a)	Briefly describe how you can determine the size of gold particles	[3]
b)	With the aid of metallurgical applications, explain why it is important to determine the	e
	following properties	

- i. Porosity of particles,
- ii. Voidage in a particle mixture,
- iii. Total surface area of a mixture
- c) A uniform particulate sample consist of spherical particles of size 2 mm and density 2650 kg/m³. If the mass of the sample is 20 kg calculate:
 - i. The total number of particles [5]
- ii. The total surface area of the particles

END OF QUESTION PAPER

Page 4 of 4 Copyright: Gwanda State University, 2022

EMR5201/ EMR 2101 Particulate systems

[12]

[5]