

GWANDA STATE UNIVERSITY
 FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENTS OF GEOMATICS AND SURVEYING

ENGINEERING MATHEMATICS II

EMR 1201, EMI 1201

This examination paper consists of 4 pages
Date:
Total Marks:
Time:
Examiner's Name:

INSTRUCTIONS

This paper consists of Section A (40 marks) and Section B (60 marks). Answer ALL questions in Section A and answer ANY THREE questions in Section B.

Use of calculator is permissible

ADDITIONAL MATERIALS

- Calculator

SECTION A (40 marks)

Answer ALL questions from this section.

A1. Find the steady state motion of the mass-spring system modeled by the ODE

$$
y^{\prime \prime}+2.5 y^{\prime}+10 y=-13.6 \sin 4 t
$$

A2. Solve
(a) $x \frac{d y}{d x}-4 y=x^{6} e^{x}$
(b) $\left(1+\ln x+\frac{y}{x} d x=(1-\ln x) d y\right.$

A3. A heart pacemeter consists of a switch, a battery of constant voltage E_{0}, a capacitor with constant capacitance C, and the heart as a resistor with constant resistance R. When the switch is closed, the capacitor charges; when the switch is open, the capacitor discharges, sending an electrical stimulus to the heart. During the time the heart is being stimulated, the voltage E across the heart satisfies the linear differential equation

$$
\begin{equation*}
\frac{d E}{d t}=-\frac{1}{R C} E \tag{5}
\end{equation*}
$$

Solve the differential equation subject to $E(4)=E$ 。

A4. Solve the boundary value problem

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial u}{\partial x} \tag{6}
\end{equation*}
$$

given that $u(x, 0)=4 e^{-3 x}+8 e^{-5 x}$.

A5. (a) Find the Fourier series of $f(x)=\sin x, \frac{-\pi}{2} \leq x<\frac{\pi}{2}$; where $f(x+\pi)=f(x)$.
(b) (i) Find the Fourier half-range cosine series for the function defined by

$$
f(x)=x, \quad 0 \leq x \leq 1
$$

(ii) Sketch the function represented by the series over the interval

$$
-3 \pi \leq x \leq 3 \pi
$$

SECTION B (60 marks)

Answer ANY THREE questions from this section.

A6. (a) Define a linear $n^{t h}$-order ODE.
(b) Find the general solution of $5 y \cos ^{3} 4 x d y+\sin 3 x d x=0$
(c) Given an RLC-circuit modeled by

$$
L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=E_{0} \omega \cos \omega t
$$

with $R=11 \Omega, L=0.1 H$ (Henry), $C=10^{-2} F$ (Farad), which is connected to a source of EMF $E(t)=110 \sin (60,2 \pi t)$ (hence $60 \quad H z=60$ cycles $/ \mathrm{sec}$, the usual in the USA and Canada; in Europe it would be 220 V and 50 Hz). Find the current $I(t)$ in the RLC-circuit, assuming that current and capacitor charge are 0 when $t=0$

Figure 1: RLC-circuit

A7. (a) State three types of Fourier transforms.
(b) Find the Fourier transform of

$$
f(x)=H(x) e^{-k x} \cos (v x)
$$

(c) Find the fourier series of

$$
f(x)=\left\{\begin{array}{lr}
x & -\pi \leq x<0 \\
-x & 0 \leq x<\pi
\end{array}\right.
$$

where $f(x)=f(x+2 \pi)$

A8. (a) Show that if initially $P=P_{\circ}$ and

$$
\frac{d P}{d t}=k P-l P^{2}
$$

where l and k are constants, then

$$
\begin{equation*}
P=\frac{k P_{\circ}}{l P_{\circ}+\alpha e^{-k t}} \tag{5}
\end{equation*}
$$

where $\alpha=k-l P$ 。
(b) Consider a mass-spring system with external force $r(t)=F_{\circ} \cos \omega t$, for $F_{\circ}>0$ and $\omega>0$ called the forcing function or the driving force. Suppose the forced motion of the mass-spring system is modeled by

$$
m y^{\prime \prime}+c y^{\prime}+k y=F_{0} \cos \omega t
$$

Show that the particular solution $\left(y_{p}(t)\right)$ is given by

$$
\begin{equation*}
y_{p}(t)=F_{\circ} \frac{m\left(\omega_{\circ}^{2}-\omega^{2}\right) \cos \omega t}{m^{2}\left(\omega_{\circ}^{2}-\omega^{2}\right)+\omega^{2} c^{2}}+F_{\circ} \frac{\omega c \sin \omega t}{m^{2}\left(\omega_{\circ}^{2}-\omega^{2}\right)+\omega^{2} c^{2}} \tag{15}
\end{equation*}
$$

where $\sqrt{\frac{k}{m}}=\omega_{\circ}$ or $k=m \omega_{\circ}^{2}$

A9. (a) Find the Laplace transforms of
(i) $f(t)=3+2 e^{-t}$
(ii) $f(t)=t^{n}$
(b) Solve the IVP using the Laplace transforms

$$
\frac{d^{2} y}{d t^{2}}+y=1, \quad y(0)=2, \quad y^{\prime}(0)=0
$$

A10. (a) Define a Boundary Value Problem (BVP).
(b) Solve

$$
\frac{d^{2} i}{d t^{2}}+10 i=V(t)
$$

where $V(t)=\left\{\begin{array}{ll}1 & -\pi<t \leq 0 \\ -1 & 0<t \leq \pi\end{array}\right.$ and $V(t+2 \pi)=V(t)$

