

FACULTY OF ENGINEERING AND ENVIRONMENT DEPARTMENT OF MINING ENGINEERING

THERMODYNAMICS AND FLUID MECHANICS

EMN 3111

Final Examination Paper

December 2023

This examination paper consists of 3 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Eng. M. Kanganga

INSTRUCTIONS

1. This question paper consists of 5 questions, answer ANY **FOUR QUESTIONS**

- 2. Each question carries 25 marks
- 3. Answer each question on a new page and write as eligible as possible

Additional Requirements

Steam Tables Calculator

MARK ALLOCATION

Question 1 to 5	25 Marks Each
Part Questions	As shown in each part question
Total Attainable	100

Page 1 of 4

Copyright: Gwanda State University

Question 1

- a. Define the terms system, boundary, surroundings and universe. Discuss various types of systems giving examples of each. [10]
- b. Why does free expansion have zero work transfer? [5]
- c. Show that work transfer is not a property of a system. [10]

Question 2

a. A gas is contained in a cylinder fitted with a piston loaded with a small number of weights. The initial pressure of the gas is 1.3 bar, and the initial volume is 0.03 m³. The gas is now heated until the volume of the gas increases to 0.1 m³. Calculate the work done by the gas in the following processes:

i.	pressure remains constant	[5]
----	---------------------------	-----

iii.
$$pv = constant during the process.$$
 [5]

Show the processes on P-V diagram. [5]

b. What do you understand by flow work? [5]

Question 3

a.	Define internal energy and prove that it is a property of the system	[5]
----	--	-----

b. A system undergoes a cycle consisting of four processes. The energy transfers are given in the table below:

Process	Q(kW))	W(kW))	ΔU(kW)
1-2	-100	A	0
2-3	400	В	С
3-4	D	300	200
4-1	0	Е	-600

Find the value of A, B, C, D and E?

[20]

Question 4

c.	Consider a steam power plant operating on the simple ideal Rankine cycle. Steam	n enters
	the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of	75 kPa.
	Determine the thermal efficiency of this cycle.	[25]

Question 5

a.	Enumerate the factors which influence the stability of laminar flow	[15]
b.	The diameters of a tapering pipe at the sections 1-1 and 2-2 are 100 mm	and 150 mm
	respectively. If the velocity of water flowing through the pipe at section 1-1 is 5	m/s, find:
j	i. Discharge through the pipe, and	[5]
i	i. Velocity of water at section 2-2.	[5]