GWANDA STATE UNIVERSITY

FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENTS OF MINING AND METALLURGY

ENGINEERING MATHEMATICS III

EMN/EMG 2101
Examination Paper
NOVEMBER 2023
This examination paper consists of 3 printed pages
Time Allowed:
3 hours

Total Marks:
100
Examiner's Name: Mr. R. G. Moyo

INSTRUCTIONS

Answer ALL questions in Section A and ANY THREE questions in Section B

ADDITIONAL REQUIREMENTS

Scientific calculator

SECTION A(40 marks)

A1. Define the following terms as they are used in Numerical methods
(a) Truncation error
(b) Optimization
(c) Upper triangular matrix
(d) Linear programming problem

A2. (a) Outline the steps followed when solving a non-linear equation using the bisection method.
(b) Use the Bisection Method to find the root of $f(x)=\cos x-\sqrt{x}$ lying between $[0,1]$. Use a tolerance of $\epsilon=0.001$ and give your answer correct to 5 decimal places.

A3. Evaluate $\int_{0}^{1} e^{2 x} d x$ using Simpson's rule. Use $\mathrm{N}=10$ giving your answers correct to 5 decimal places.

A4. Let $f(x)$ be given by the table below

x	1.2	1.4	1.45	1.5	1.55	1.6	1.7
$f(x)$	4.77009	5.67728	6.1152	6.18152	7.30278	7.92485	8.20577

Find an approximation to
(a) $f^{\prime}(1.4)$ using the forward difference method
(b) $f^{\prime}(1.4)$ using the central difference method
(c) $f^{\prime}(1.5)$ using the backward difference method using $h=0.1$
(d) $f^{\prime \prime}(1.6)$
(e) $f^{\prime}(1.5)$ using the central difference method and compare it with the true value $f^{\prime}(1.5)=11.2042$

SECTION B (60 marks)

A5. (a) Write down a Matlab code to solve an initial value problem $y^{\prime}=\frac{x-y}{2}$ on $[0 ; 100]$ using $\mathrm{h}=0.1$
(b) Estimate the natural logarithm of 2 using linear interpolation. First, perform the computation by interpolating between $\ln 1=0$ and $\ln 6=1.791759$. Then repeat the procedure, but use a smaller interval, $\ln 1$ to $\ln 4=1.386294$. Compare the two estimates with the exact value of $\ln 2$ and give a comment. Note that the true value of $\ln 2$ is 0.6931472 .
(c) Discuss the application of interpolation in a mine setup.

A6. (a) What is a matrix?
(b) State any 3 methods that can be used to solve systems of linear equations.
(c) Consider the following system of equations
$x_{1}+x_{2}+3 x_{4}=4$
$2 x_{1}+x_{2}-x_{3}+x_{4}=1$
$3 x_{1}-x_{2}-x_{3}+2 x_{4}=-3$
$-x_{1}+2 x_{2}+3 x_{3}-x_{4}=4$
(i) Write down the system in the form $\mathbf{A} \bar{x}=\mathbf{b}$
(ii) Find the inverse of the matrix \mathbf{A} using elementary row operations
(iii) Hence use the inverse to solve the above systems of equations.

A7. A company manufactures two products of A and B. These products are processed in the same machine. It takes 10 minutes to process one unit of product A and 2 minutes for each unit of product B and the machine operates for a maximum of 35 hours in a week. Product A requires 1 kg and B requires 0.5 kg of raw material per unit, the supply of which is 600 kg per week. Market constraint on product B is known to be minimum of 800 units every week. Product A cost $\$ 5$ per unit and sold at $\$ 10$. Product B costs $\$ 6$ per unit and can be sold in the market at a unit price of $\$ 8$.
(a) Formulate a Linear programming problem for the above scenario.
(b) Find the dual of the above Linear programming model
(c) Solve the primal problem using the simplex algorithm.

A8. (a) Solve the initial value problem $y^{\prime}=\frac{x-y}{2}, y(0)=1$ on $[0,2]$ with $h=1$ using the Modified-Euler's method. Hence compute the error if $y(x)=3 e^{-\frac{x}{2}}+x-2$.
(b) Apply Runge-Kutta method of order four $\left(R K_{4}\right)$ to solve an initial-value problem $y^{\prime}=-2 x y^{2}, y(0)=1$ from $x=0$ to $x=0.4$ using $h=0.2$.

END OF QUESTION PAPER

[^0]
[^0]: "Mathematics is the supreme judge; from its decisions there is no appeal"

