

FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENT OF MINING ENGINEERING

ELECTRICAL PRINCIPLES

EMI 1203 / EMR 1203 / EGS 1206

Final Examination Paper

June 2023

This examination paper consists of 5 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. K. Garapo

INSTRUCTIONS

1. Answer <u>all</u> questions in Section A and <u>any three</u> questions in Section B.

- 2. Begin each solution for a new question on a new page and show all working.
- 3. Section A consists of a four question carrying 10 marks each.
- 4. Section B consists of **four** questions carrying **20 marks** each.
- 5. Use of calculators is permissible.

Additional Requirements

None

MARK ALLOCATION

Questions	Marks
Question 1	10
Question 2	10
Question 3	10
Question 4	10
Question 5	20
Question 6	20
Question 7	20
Question 8	20
Total Attainable	100

Page 1 of 5

The delta and star circuits shown in <u>Figure A1</u> are equivalent. Determine the values of C_a , C_b and C_c , given that $C_1 = 20 \, \mu F$, $C_2 = 50 \, \mu F$ and $C_3 = 30 \, \mu F$. [10]

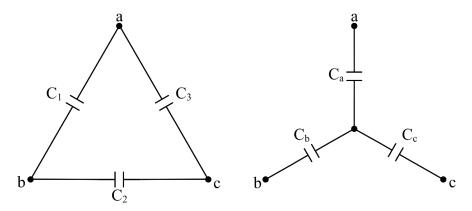
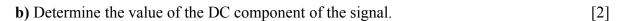



Figure A1

Question 2

Refer to the oscillogram shown in Figure A2 and answer the following:

a) Determine the following values: i) peak voltage, ii) period, iii) frequency and iv) rms voltage, of the AC component of the signal, [8]

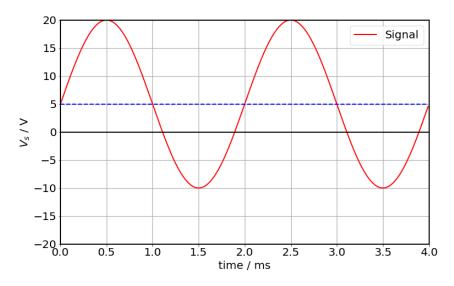


Figure A2

Given a balanced three-phase voltage system, show (with the aid of phasors) that the sum of the three phase voltages is zero. [10]

Question 4

Given that the circuit shown in Figure A3 was in a steady state when the switch was toggled at a timet = 0, answer the following:

- a) Determine the time constant τ of the resulting RC circuit, [3]
- b) Determine the power dissipation of the resistor at a time $t = 1.5\tau$. [7]

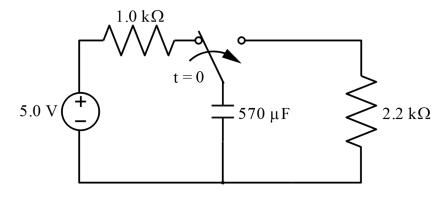


Figure A3

- a) Thévenise the circuit shown in Figure B1 given that Z_L is the load of interest. [15]
- b) Deduce the combination of capacitance or inductance and/or resistance required to constitute the load for maximum power to be transferred from the Thévenin's equivalent voltage source, determined in a), to the load. [5]

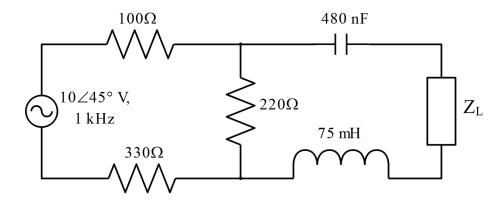


Figure B1

Question 6

- a) Given the circuit shown in Figure B2, apply the superposition theorem to determine the current flowing through the 10Ω resistor. [10]
- b) Apply mesh analysis to verify the current flowing through the 10Ω , which you calculated in part a). [10]

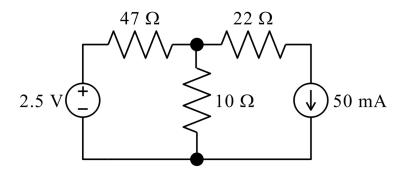


Figure B2

a) Given the following binary numbers: $A = 10011011_2$ and $B = 11011011_2$, determine the following (without using a calculator and stating all steps necessary):	ie
i) 1's complement of A,	[2]
ii) 2's complement of B,	[2]
iii) A + B,	[2]
iv) A – B, giving your answer in hexadecimal (HEX).	
b) Using universal logic gates of the same type draw the logic circuit represented by the following equation: $O = A\overline{B} + A\overline{C}$.	[5]
c) Draw the diagram of a simple NPN BJT transistor inverter.	[5]
Question 8 a) Three inductive loads each of resistance 150Ω and inductance $318.4 mH$ are connected to a $415 V$, $50 Hz$, 3-phase supply. Determine the following:	in delta
i) phase voltage,	[3]
ii) phase current,	[6]
iii) line current.	[3]
b) Determine the total power dissipated by three 68Ω resistors when connected to a 440 phase supply	V, 3-
i) in star,	[4]
ii) in delta.	[4]