

2023 FIRST SEMESTER FINAL EXAMINATION

Faculty:	Engineering and the Environment
Department:	Metallurgical Engineering
Paper Code/Title:	EMG 3106 FLUID MECHANICS
Duration:	$\mathbf{3}$ Hours
Examiner:	Eng. S. Hobwana

INSTRUCTIONS TO CANDIDATES

1. Answer ANY 4 questions.
2. Start the answer to each question on a fresh page.
3. Show all your working.
4. Each question carries $\mathbf{2 5}$ marks.
5. This question paper comprises 5 printed pages including cover page.

Question 1

(a) Starting with the Bernoulli and Continuity equations, show that the following expression gives the discharge measured by a venturimeter.

$$
Q=C_{d} A_{1} A_{2} \sqrt{\frac{2 g\left(\frac{p_{1}-p_{2}}{\rho g}+z_{1}-z_{2}\right)}{A_{1}^{2}-A_{2}^{2}}}
$$

[7 marks]
(b) A horizontal venturimeter is used to measure the flow of water in a 200 mm diameter pipe. The throat diameter of the venturimeter is 80 mm and the discharge coefficient is
0.85 . If the pressure difference between the two measurement points is 10 cm of mercury, calculate the average velocity in the pipe. Assume the relative density of mercury is 13.6 .
[8 marks]
(c) The velocity of the water flowing in the same pipe is also measured using a pitot-static tube located centrally in the flow. If the height measured on the attached manometer is 60 mm and the relative density of the manometer fluid is 1.45 , determine the velocity of the water. [8 marks]
(d) Explain why the velocity measured by the pitot-static tube is higher than that measured by the venturimeter. [2 marks]

Question 2

(a) Tabulate 4 different types of fluid flow and their corresponding examples.
(b) If we were to take a pipe of free flowing water and inject a dye into the middle of the stream, what would we expect to happen? Draw diagrams to express the 3 possible outcomes to this experiment. [$\mathbf{6}$ marks]
(c) The phenomenon in (b) was first investigated in the 1880s by Osbourne Reynolds in an experiment which has become a classic in fluid mechanics.

Figure 1
He used a tank arranged as above Figure 1 with a pipe taking water from the centre into which he injected a dye through a needle. After many experiments he saw that this expression

$$
R e=\frac{\rho u d}{\mu}
$$

where $\rho=$ density, $u=$ mean velocity, $d=$ diameter and $\mu=$ viscosity
would help predict the change in flow type.
i) Explain the significance of the Reynolds number? [2 marks]
ii) Give 3 points to each of the 3 outcomes questioned in (b) to summarize the types of flow giving the correct range of the Reynolds number, velocity and description of how it mixes with water. [9 marks]

Question 3

(a) An axial-flow ventilating fan driven by a motor that delivers 0.4 kW of power to the fan blades produces a $0.6-\mathrm{m}$ - diameter axial stream of air having a speed of $12 \mathrm{~m} / \mathrm{s}$. The flow upstream of the fan involves negligible speed. See Figure 2 below.

Figure 2
Determine how much of the work to the air actually produces useful effects, that is, fluid motion and a rise in available energy. Estimate the fluid mechanical efficiency of this fan.
[10 marks]
(b) A viscous liquid $\rho=1.18 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} ; \mu=0.0045 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ flows at a rate of $12 \mathrm{ml} / \mathrm{s}$ through a horizontal, 4-mm-diameter tube.
i) Determine the pressure drop along a $1-\mathrm{m}$ length of the tube which is far from the tube entrance so that the only component of velocity is parallel to the tube axis. [$\mathbf{8}$ marks]
ii) If a 2 -mm-diameter rod is placed in the 4 -mm-diameter tube to form a symmetric annulus, what is the pressure drop along a $1-\mathrm{m}$ length if the flowrate remains the same as in part \mathbf{i})?
[7 marks]

Question 4

(a) A pump P with a volume flow $\mathrm{qv}=2.8 \mathrm{~L} / \mathrm{s}$ brings water up between a basin B and a tank through a pipe with a diameter d=135 mm. See Figure 3 below.

Figure 3
Given:
$-\mathrm{Z}_{1}=0 ; \mathrm{Z}_{2}=35 \mathrm{~m}$
$-\mathrm{P}_{1}=\mathrm{P}_{2}=1013 \mathrm{mbar}$

- Dynamic viscosity of water: $\mu=1.10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$.
- pipe length $\mathrm{L}=65 \mathrm{~m}$

All singular head losses will be neglected.
i) Calculate the flow velocity V of the water in the pipe. [2 marks]
ii) Calculate the Reynolds number. Is the flow laminar or turbulent?
[2 marks]
iii) Calculate the linear head loss coefficient. Deduce the losses of \mathbf{J}_{12} charges throughout the flow. [5 marks]
iv) Apply Bernoulli's theorem to calculate the net power $\mathrm{P}_{\text {net }}$ of the pump. [2 marks]
v) The efficiency of the pump being 80%, calculate the power absorbed by the pump. [2 marks]
vi) What comment can you give on the calculated values above? [$\mathbf{2}$ marks]
(b) The cylindrical tank with hemispherical ends shown in Figure 4 contains a volatile liquid and its vapour. The liquid density is $800 \mathrm{~kg} / \mathrm{m}^{3}$ and its vapour density is negligible. The pressure in the vapour is 120 kPa (abs) and the atmospheric pressure is 101 kPa (abs).

Figure 4
Determine:
i) The gage pressure reading on the pressure gage. [5 marks]
ii) The height h of the mercury manometer. [$\mathbf{5}$ marks]

Question 5

(a) A tank contains compressed air at a pressure $\mathrm{Pi}=4$ bars, assumed stop pressure in the initial state. Opening a valve in this tank causes the expansion of the air towards the outside in the form of a jet having a diameter $\mathrm{d}=5 \mathrm{~mm}$.
The external parameters of the air jet in the final state are:

- Pressure $\mathrm{P}=1$ bar,
- Temperature $\mathrm{T}=25^{\circ} \mathrm{C}$,

Given: $\gamma=1.4$ and $\mathrm{r}=287 \mathrm{~J} / \mathrm{Kg} .{ }^{\circ} \mathrm{K}$.
i) Calculate the speed of sound C outside the tank in (m / s). [2 marks]
ii) Determine the density ρ of the air outside the tank in $(\mathrm{kg} / \mathrm{m} 3)$. (Air is assumed to be an ideal gas.) [2 marks]
iii) Write the Saint-Venant equation, in terms of the pressure ratio, between a stopping point and a point on the air jet. [3 marks]
iv) Deduce the number of Mach M at the level of the air jet. [2 marks]
v) What is the nature of the flow? [2 marks]
vi) Calculate the flow velocity V of the air jet in (m / s). [2 marks]
vii) Deduce the mass flow $\mathrm{q}_{\mathrm{m}}(\mathrm{kg} / \mathrm{s})$. [2 marks]
(b) A waste-heat boiler forms an essential part for the treatment of high temperature fluegases in most metallurgical processes. The Figure 5 below represents a boiler C which produces steam at a mass flow $\mathrm{q}_{\mathrm{m}}=13.4 \mathrm{~kg} / \mathrm{s}$.

Figure 5

Through a cylindrical pipe, the steam arrives in a section S of diameter $\mathrm{d}=10 \mathrm{~cm}$ at a pressure $\mathrm{P}=15$ bar and a temperature $\mathrm{T}=541^{\circ} \mathrm{K}$.
The characteristics of water vapor are given:
$-\gamma=1.3$.
$-\mathrm{r}=462 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{K}$.
i) Assuming that the vapor is an ideal gas, calculate the density ρ of steam leaving the boiler.

[2 marks]

ii) Determine the flow velocity V. [2 marks]
iii) Calculate the speed of sound C. [2 marks]
iv) Deduce the Mach number M. Specify the nature of the flow. [2 marks]
v) Write the Saint-Venant equation in terms of the pressure ratio, and calculate the stop pressure Pi inside the boiler. [2 marks]

