GWANDA STATE UNIVERSITY
 FACULTY OF ENGINEERING AND ENVIRONMENT DEPARTMENT OF METALLURGICAL ENGINEERING
 METALLURGICAL THERMODYNAMICS
 EMG 2105

Part II First Semester Examination Paper
November 2023

This examination paper consists of 4 printed pages
Time Allowed: 3 hours
Total Marks: 100

INSTRUCTIONS

1. Answer any FIVE questions
2. Each question carries 20 marks
3. Use of calculators is permissible

Additional Requirements

1. Periodic table
2. Thermodynamics Property tables
3. Calculator
4. Graph paper

MARK ALLOCATION

Part Questions	As shown in each part question
Total Attainable	100

Page 1 of 4

Copyright: Gwanda State University, 2023
EMG 2105 Metallurgical Thermodynamics

Question 1

(a) Explain three causes of irreversibility in reactions
(b) Differentiate between isothermal and adiabatic system
(c) Find the change in internal energy when 100 kg of steam at constant pressure $P=1$ bar has its temperature reduced from $300^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
(d) To a closed system 150 kJ of work is supplied. If the initial volume is $0.6 \mathrm{~m}^{3}$ and pressure of the system changes as $P=8-4 V$, where P is pressure in bars and V is volume in m^{3}, determine:
i. the final volume
ii. Pressure of the system.

Question 2

(a) Explain three similarities between work and heat
(b) Explain the following thermodynamics terms with examples :
i. State,
ii. Process,
iii. Cycle.
(c) A gas mixture consists of 2 kg of $\mathrm{O}_{2}, 5 \mathrm{~kg}$ of N_{2}, and 7 kg of CO_{2}. Determine
i. the mass fraction of each component,
ii. the average molar mass
iii. gas constant of the mixture

Question 3

(a) Explain the first law of thermodynamics using an example
(b) Water at $120{ }^{\circ} \mathrm{C}$ with a quality of 25% has its temperature raised $20^{\circ} \mathrm{C}$ in a constant volume system. What is the new quality and pressure?
(c) A vessel of 0.35 m capacity contains 0.4 kg of carbon monoxide (molecular
weight $=28$) and 1 kg of air at $20^{\circ} \mathrm{C}$. The gravimetric analysis of air is to be taken as 23.3% oxygen (molecular weight $=32$) and 76.7% nitrogen (molecular weight $=$ 28). Calculate :
i. The partial pressure of each constituent,
ii. The total pressure in the vessel,

Question 4

(a) What do you understand by intensive properties
(b) You are a metallurgical process engineer for company X with mines and processes gold Identify and explain the following types of systems in your plant.
i. Open system
ii. Isothermal
(c) An iron cube at a temperature of $400^{\circ} \mathrm{C}$ is dropped into an insulated bath containing 10 kg water at $25^{\circ} \mathrm{C}$. The water finally reaches a temperature of $50^{\circ} \mathrm{C}$ at steady state. Given that the specific heat of water is equal to $4186 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
i. Find the entropy changes for the iron cube and the water.
ii. Is the process reversible? Explain your answer

Question 5

(a) Explain the relationship between free- energy change and spontaneity of reactions.
(b) An ideal gas is enclosed in a cylinder which has a movable piston. The gas is heated, resulting in an increase in temperature of the gas, and work is done by the gas on the piston so that the pressure remains constant.
i. Is the work done by the gas positive, negative or zero? Explain
ii. From a microscopic view, how is the internal energy of the gas molecules affected?
iii. Is the heat less than, greater than or equal to the work? Explain.
(c) A rigid tank contains 5 kg of refrigerant-134a initially at $20^{\circ} \mathrm{C}$ and 140 kPa . The refrigerant is now cooled while being stirred until its pressure drops to 100 kPa . Determine the entropy change of the refrigerant during this process

Question 6

(a) A metal is melted in a furnace, which type of system is this, discuss with the aid of a diagram.
(b) A piston-cylinder device initially contains 50 L of liquid water at $40^{\circ} \mathrm{C}$ and 200 kPa . Heat is transferred to the water at constant pressure until the entire liquid is vaporized.
i. What is the mass of the water?
ii. What is the final temperature?
iii. Determine the total enthalpy change.
(c) In an internal combustion engine, during the compression stroke the heat rejected to the cooling water is $50 \mathrm{~kJ} / \mathrm{kg}$ and the work input is $100 \mathrm{~kJ} / \mathrm{kg}$. Calculate the change in internal energy of the working fluid stating whether it is a gain or loss.

END OF QUESTION PAPER

Page 4 of 4
Copyright: Gwanda State University, 2022

