

FACULTY OF EXPLORATION AND EARTH SCIENCES BACHELOR OF ENGINEERING DEGREE IN GEOMATICS AND SURVEYING

PHYSICAL GEODESY

MODULE CODE: EGS 2108

FINAL EXAMINATIONS: SEPTEMBER/ OCTOBER 2023

DURATION : 3 HOURS

TOTAL MARKS : 100

EXAMINER : O. MUROMO

INSTRUCTIONS

1. Answer ALL questions

2. Scientific calculators may be used

3. Modified Clarke 1880 Constants:

1			HISTORICAL DEVELOPMENT OF GEODESY	
			(TOTAL 25 MARKS)	
	a)		Describe and explain the following observation techniques in geodesy:	
		(i)	Astronomical measurement techniques	3
		(ii)	Terrestrial measurement techniques	3
		(iii)	Space measurement techniques	3
	b)		From the fundamental definitions, derive the following;	
			$e^2 = 2f - f^2$	4
			$e^2 = \frac{e'^2}{1 + e'^2}$	5
	c)		With the aid of well annotated diagrams, define the following:	
		(i)	The Sphere	3
		(ii)	The Geoid	4
2			GEOMETRY OF AN ELLIPSE	
			(TOTAL 25 MARKS)	
	a)		Describe three modern ways of determining global best fit ellipsoids	5
	b)		A point P on the Modified Clarke 1880 ellipsoid and at Latitude of 76°34′15″	
			north and Longitude of 67°43′51″ east, calculate the following:	
		(i)	Radius of curvature in the Meridian	3
		(ii)	Radius of curvature in the Prime Vertical	3
		(iii)	Gaussian Mean Radius of curvature	4
		(iii)	Radius of curvature in the direction 56°23′19″	5
		(iv)	The length of arc from a Latitude of 87°55′52″	5
3			GEODETIC PROBLEMS (TOTAL 25 MARKS)	
	a)	(i)	Advise a topographical Surveyor in what circumstances to use the Gauss Mid	5
			latitude formular	
		(ii)	Differentiate between the direct and inverse problems for the Bowring	5
			formular. Include illustrations	

	b)		Using the data given below, compute good approximate coordinates for 161/P and the reverse azimuth using the Bowring formula	
			160/P $\phi = 17^{\circ}36'37''$ $\lambda = 31^{\circ}10'25''$ $\delta = 13547.934m$	
4			COORDINATE SYSTEMS AND COORDINATE TRANSFORMATIONS (TOTAL 25 MARKS)	
	a)		With the aid of well annotated diagrams, describe and explain the following coordinate systems:	
		(i)	Space-Fixed Coordinate Systems	5
		(ii)	Earth-Fixed coordinate Systems	5
		(iii)	Topocentric coordinate Systems	5
	b)		Given the following:	10

- END OF PAPER-