FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENT OF GEOMATICS AND SURVEYING
 ELECTRICITY AND MAGNETISM
 EGS 1210

Final Examination Paper
September 2023
This examination paper consists of 4 printed pages.
Time Allowed: 3 hours
Total Marks: 100

Examiner's Name: Mr. P. Sigwegwe
INSTRUCTIONS
ANSWER ALL PARTS OF QUESTION 1 IN SECTION A AND ANY THREE QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

MARK ALLOCATION

QUESTION	MARKS
1.	40
2.	20
3.	20
4.	20
5.	20
6.	20
Maximum possible mark	$\mathbf{1 0 0}$

Additional Requirements

Calculator
Constants
Permeability of free space $\mu_{o}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of free space $\boldsymbol{\epsilon}_{\mathbf{o}}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Charge of an electron
Mass of an electron
$\mathbf{e}=1.6 \times 10^{-19} \mathrm{C}$

Mass of an proton
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$
Page 1 of 4

Copyright: Gwanda State University, 2023

SECTION A

QUESTION 1

a) What is an electric field? On a well labelled diagram draw electric field lines of a positive charge, negative charge and a dipole.
b) Distinguish between an Ohmic and a Non Ohmic material.
c) A rod of length $/$ as shown in figure 1 , has a uniform positive charge per unit length $\boldsymbol{\lambda}$ and a total charge \mathbf{Q}. Calculate the electric field at a point \mathbf{P} that is located along the \mathbf{x} axis of the rod and a distance a from the rod.

Figure 1: The electric field at P due to a uniformly charged rod lying along the x axis.
d) Show that the ideal power equation of a transformer is given by $\frac{V_{p}}{V_{s}}=\frac{I_{s}}{I_{p}}=\frac{N_{p}}{N_{s}}$ where V_{s} is the voltage in the secondary coil, V_{p} is the voltage in the primary coil, I_{p} is the current in the primary coil, I_{s} is the current in the secondary coil, N_{s} is the number of turns of the secondary coil and N_{p} is the number of turns of the primary coil.
e) The voltage output of an AC source is given by the expression $\Delta v=200 \sin \omega t$, where Δv is in volts. Find the rms current in the circuit when this source is connected to a $100-\mathrm{V}$ resistor.
f) Define the following terms
(i) Paramagnetism
(ii) Diamagnetism
(iii) Ferromagnetism

SECTION B

QUESTION 2

(a) State Ohm's law and give any one use of a resistor in a circuit.
(b) Define capacitance (C) of a capacitor.
(c) Two conductors of the same material and length have different resistances. Conductor A is a solid 1.00 mm in diameter wire. Conductor B is a tube of inner diameter 1.00 mm and outer diameter 2.00 mm . Find the ratio of the resistance of conductor A to conductor B.[5]
(d) Derive the equation for capacitors in:
(i) Parallel.
(ii) Series.

QUESTION 3

(a) Define the electric flux.
(b) An insulating solid sphere of radius a has a uniform volume charge density ρ and carries a total positive charge \mathbf{Q}, using Gauss law
(i) Calculate the magnitude of the electric field at a point outside the sphere.
(ii) Calculate the magnitude of the electric field at a point inside the sphere.
(iii) Sketch the electric field \mathbf{E} versus radius \mathbf{r} of the Gaussian surface.

QUESTION 4

(a) What is an inductor? What is it used for in an electric circuit?
(b) Using Amperes law, derive the equation for the magnetic field B around a long current carrying conductor.
(c) Derive the equation $I_{a v g}=n q A v_{d}$ for the average current in a conductor where $I_{\text {avg }}$ is the average current, n is the number of mobile charge carriers per unit volume, q is the charge on each carrier, \boldsymbol{A} is cross-sectional area of cylindrical conductor and v_{d} is the velocity of the carriers.
(d) State and explain the Biot-Savart rule.

QUESTION 5

(a) Give the following Maxwell's equations and state their scientific meaning.
(i) Gauss's law.
(ii) Gauss's law in Magnetism.
(iii) Faraday's law of Induction.
(iv) Ampere - Maxwell law.

QUESTION 6

(a) Define magnetic flux.
(b) With aid of a diagram describe the following terms
(i) Mutual inductance.
(ii) Self inductance.
(c) Charges $\boldsymbol{q}_{\mathbf{1}}$ and $\boldsymbol{q}_{\mathbf{2}}$ are located on the \mathbf{x} axis at distances at distances \mathbf{a} and \mathbf{b} respectively from the origin as shown in figure 2 below. Find the components of the net electric field at a point \mathbf{P}, which is at position ($0, \mathrm{y}$).

Figure 2: Diagram showing the electric field \mathbf{E} at a point P.
\square

