

FACULTY OF ENGINEERING AND THE ENVIRONMENT

DEPARTMENT OF GEOMATICS AND SURVEYING

ELECTRICITY AND MAGNETISM

EGS 1210

Final Examination Paper

September 2023

This examination paper consists of 4 printed pages.

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. P. Sigwegwe

INSTRUCTIONS

ANSWER <u>ALL</u> PARTS OF QUESTION 1 IN SECTION A AND ANY <u>THREE</u> QUESTIONS FROM SECTION B. SECTION A CARRIES 40 MARKS AND SECTION B CARRIES 60 MARKS.

MARK ALLOCATION

QUESTION	MARKS
1.	40
2.	20
3.	20
4.	20
5.	20
6.	20
Maximum possible mark	100

Additional Requirements

Calculator	
Constants	
Permeability of free space	e μ ₀ = 4π x10 ⁻⁷ Hm ⁻¹
Permittivity of free space	ε₀ = 8.85 x 10 ⁻¹² F m ⁻¹
Charge of an electron	e = 1.6 x 10 ⁻¹⁹ C
Mass of an electron	m _e = 9.11 x 10 ⁻³¹ kg
Mass of an proton	m _p = 1.67 x 10 ⁻²⁷ kg
	Dess 1

Page 1 of 4

Copyright: Gwanda State University, 2023

SECTION A

QUESTION 1

- a) What is an electric field? On a well labelled diagram draw electric field lines of a positive charge, negative charge and a dipole.
 [8]
- b) Distinguish between an Ohmic and a Non Ohmic material.
- c) A rod of length *I* as shown in figure 1, has a uniform positive charge per unit length λ and a total charge **Q**. Calculate the electric field at a point **P** that is located along the **x** axis of the rod and a distance **a** from the rod.

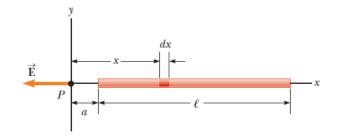


Figure 1: The electric field at P due to a uniformly charged rod lying along the x axis.

- d) Show that the ideal power equation of a transformer is given by $\frac{V_p}{V_s} = \frac{I_s}{I_p} = \frac{N_p}{N_s}$ where V_s is the voltage in the secondary coil, V_p is the voltage in the primary coil, I_p is the current in the primary coil, I_s is the current in the secondary coil, N_s is the number of turns of the secondary coil and N_p is the number of turns of the primary coil. [6]
- e) The voltage output of an AC source is given by the expression $\Delta v = 200 \sin \omega t$, where Δv is in volts. Find the rms current in the circuit when this source is connected to a 100-V resistor. [5]
- f) Define the following terms
 - (i)Paramagnetism[3](ii)Diamagnetism[3]
 - (iii) Ferromagnetism [3]

[4]

SECTION B

QUESTION 2

(a) State	Ohm's law and give any one use of a resistor in a circuit.	[3]		
(b) Defin	e capacitance (C) of a capacitor.	[2]		
(c) Two d	onductors of the same material and length have different resistances. Condu	ictor A		
is a so	lid 1.00mm in diameter wire. Conductor B is a tube of inner diameter 1.00m	m and		
outer	diameter 2.00mm. Find the ratio of the resistance of conductor A to conducto	or B.[5]		
(d) Deriv	e the equation for capacitors in:			
(i)	Parallel.	[5]		
(ii)	Series.	[5]		
QUESTION 3				
(a) Defin	e the electric flux.	[2]		
(b) An insulating solid sphere of radius a has a uniform volume charge density ${f ho}$ and carries				
a tota	l positive charge Q , using Gauss law			
(i)	Calculate the magnitude of the electric field at a point outside the sphere.	[5]		
(ii)	Calculate the magnitude of the electric field at a point inside the sphere.	[8]		
(iii)	Sketch the electric field E versus radius r of the Gaussian surface.	[5]		
QUESTION 4				
(a) What	is an inductor? What is it used for in an electric circuit?	[4]		
(b) Using	(b) Using Amperes law, derive the equation for the magnetic field B around a long current			
carryi	ng conductor.	[6]		
(c) Deriv	e the equation $I_{avg} = nqAv_d$ for the average current in a conductor where	I _{avg} is		
the a	verage current, <i>n</i> is the number of mobile charge carriers per unit volume, q	is the		
charg	charge on each carrier, A is cross-sectional area of cylindrical conductor and v_d is the			
	ty of the carriers.	[6]		
(d) State	and explain the Biot-Savart rule.	[4]		

QUESTION 5

(a) Give the following Maxwell's equations and state their scientific meaning.

	(i)	Gauss's law.	[5]	
	(ii)	Gauss's law in Magnetism.	[5]	
	(iii)	Faraday's law of Induction.	[5]	
	(iv)	Ampere – Maxwell law.	[5]	
QUESTION 6				
(a) Define magnetic flux.			[3]	
(b) With aid of a diagram describe the following terms				
	(i)	Mutual inductance.	[5]	
	(ii)	Self inductance.	[5]	

(c) Charges q_1 and q_2 are located on the x axis at distances at distances **a** and **b** respectively from the origin as shown in figure 2 below. Find the components of the net electric field at a point **P**, which is at position (0, y).

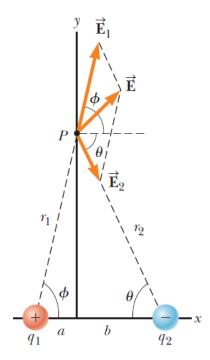


Figure 2: Diagram showing the electric field E at a point P.

ELECTRICITY AND MAGNETISM EGS 1210