

GWANDA STATE UNIVERSITY

FACULTY OF ENGINEERING AND THE ENVIRONMENT

DEPARTMENT OF GEOMATICS AND SURVEYING

ADJUSTMENT COMPUTATIONS I

EGS2209

Examination Paper

Semester II 2023

This examination paper consists of 5 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner: Mr. V. Mlilo

INSTRUCTIONS

- 1. Answer ALL Questions in chronological order.
- 2. Scientific Calculators may be used.
- 3. Programmable calculators are not allowed

- 1. a) Give a concise explanation of why measurements are classified as random [5] variables?
 - b) Explain these terms as used in surveying measurements: [10]
 - i. Variance,
 - ii. Redundancy,
 - iii. Residual,
 - iv. True Value,
 - v. Misclosure.
 - c) In your own words and using illustrations define and clearly show the [10] difference between precision and accuracy
- 2 a i Given the matrix below

fix below [5]
$$\begin{bmatrix} 3 & -1 & 0 \end{bmatrix}$$

$$\mathbf{B} \begin{bmatrix} 3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

Find its inverse (**B**⁻¹) using the adjoint method.

ii Formulate a Jacobian matrix from the functions given below

$$y_1 = 2x_1 + x_2^2 + 4x_3^2$$

$$y_2 = 6 + x_1 + 3x_2^2$$

$$y_3 = 6x_2^2 + 10$$

$$y_4 = 3x_1^2 + x_3^2$$

$$y_5 = \ 2{x_1}^3 + x_2 + 3{x_3}^4$$

b) Measurements of a triangulation scheme are as follows

	Distance	Standard
		Deviations
d	2140.70m	0.018m
A	52° 12' 40"	2"
В	51° 37' 15"	2"
С	73° 55' 11"	3"
D	79° 04' 22"	3"

Where 'b' can be calculated as $b = d \frac{SinA SinB}{SinD Sin C}$

i Compute b and its standard deviation.

[9]

c) A distance is measured using three different methods. The observed values and there standard deviations are shown below.

	Distance	Standard Deviations
A	352.095	0.020
В	352.147	0.030
С	352.062	0.060

i Calculate the weighted mean of the observed distances and the standard deviation of [6] the weight mean distance.

A paddock ABCDEA at Gwanda State University is to be subdivided into 3 paddocks M, N and Q. Measurements to A, B, C, D and E are made from a remote station P

From P	Observation	Standard. Dev.
A	127.96m	±2.0cm
В	287.69m	±2.5cm
C	131.10m	± 1.3 cm
D	323.02m	±5.2cm
E	233.77m	±3.1cm
Angles	Observation	Standard. Dev.
A P B	26° 33′ 43″	±2.1"
APE	44° 58′ 49″	±2.5"
APC	56° 40′ 32″	±2.3"
APD	64° 18' 29"	±1.3"

i) Calculate the length of fence needed to fence off the three paddocks and its standard deviation

ii) Calculate the area of each paddock M, N, Q and the standard deviations [10]

i	Using the parametric least squares procedure show that you can get a unique solution in the form $\Delta = N^{-1}t$		
	Where $N = B^TWB$, $t = B^TWf$ & Δ is the matrix of parameters		
ii	Explain these terms as used in least squares adjustment; stochastic model,	[7]	
	normal equation,		
	mathematical model.	[6]	
iii	Define the following terms		
	random error theory,		
	confidence intervals,		
	statistical testing.	[3]	
iv	As a student of survey, outline the importance of error analysis, least squares adjustment and statistics in the profession of a geomaticians.	[7]	
V	Why do we assign weights to measurements?	[2]	
	ii iii iv	solution in the form Δ = N ⁻¹ t Where N = B ^T WB, t = B ^T Wf & Δ is the matrix of parameters ii Explain these terms as used in least squares adjustment; stochastic model, condition equation, normal equation, mathematical model. iii Define the following terms random error theory, confidence intervals, statistical testing. iv As a student of survey, outline the importance of error analysis, least squares adjustment and statistics in the profession of a geomaticians.	