

GWANDA STATE UNIVERSITY
 FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENTS OF GEOMATICS AND SURVEYING

CALCULUS

EGS 1207

This examination paper consists of 4 pages
Date:
Total Marks:
Time:
Examiner's Name:

INSTRUCTIONS

This paper consists of Section A (40 marks) and Section B (60 marks). Answer ALL questions in Section A and answer ANY THREE questions in Section B.

Use of calculator is permissible

ADDITIONAL MATERIALS

- Calculator

SECTION A (40 marks)

Answer ALL questions from this section.

A1. Given that $h(t)=\ln (t-3)+1$,
(a) Find the domain and range of $h(t)$.
(b) Sketch the graph $h(t)$.
(c) Show that $\left(h \circ h^{-1}\right)(t)=t$.

A2. (a) Evaluate
(i) $\lim _{y \rightarrow 0} \frac{5 y^{3}+8 y^{2}}{3 y^{4}-16 y^{2}}$
(ii) $\int_{0}^{\infty} x^{2} e^{-x} d x$
(b) If two resistors of R_{1} and R_{2} ohms are connected in parallel in an electric circuit to make an R-ohm resistor, the value of R can be found from the equation

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Figure 1: Parallel resistors
If R_{1} is decreasing at the rate of $1 \mathrm{ohm} / \mathrm{sec}$ and R_{2} is increasing at the rate of $0.5 \mathrm{ohm} / \mathrm{sec}$, at what rate is R changing when $R_{1}=75 \mathrm{ohms}$ and $R_{2}=$ 50 ohms

A3. Find $\frac{d y}{d x}$, given

> (a) $y=\sqrt{\frac{x^{2}+x}{x^{2}}}$
> (b) $x^{3}+4 x y-3 y^{\frac{4}{3}}$

A4. (a) Find the Maclaurin series for $f(x)=\sin (3 x)$
(b) Find the interval of convergence of the power series $\sum n x^{n}$

SECTION B (60 marks)

Answer ANY THREE questions from this section.

A5. (a) Given that

$$
f(x)=\left\{\begin{array}{lr}
-x-2, & -4 \leq x \leq-1 \\
-1, & -1<x \leq 1 \\
x-2, & 1<x \leq 2
\end{array}\right.
$$

Sketch the graphs of f and $f \circ f$
(b) Evaluate $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+16}\right)$
(c) Using the $\epsilon-\delta$ definition, prove that

$$
\lim _{x \rightarrow-4} \frac{16-x^{2}}{4+x}=8
$$

(i) Define continuity
(ii) Consider

$$
g(x)=\left\{\begin{array}{lr}
-2, & x \leq-1 \\
a x-b, & -1<x<1 \\
3, & x \geq 1
\end{array}\right.
$$

For what values of a and b is $g(x)$ continuous at every x ?

A6. (a) Define a derivative.
(b) Water is leaking out of an inverted conical tank at a rate of $10,000 \mathrm{~cm}^{3} / \mathrm{min}$ at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and the diameter at the top is $4 m$. If the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ when the height of water is 2 m , find the rate at which water is being pumped into the tank.
(c) Sketch the graph of $f(x)=\frac{x^{2}-4}{2 x}$ by identifying
(i) the domain of f and any symmetries the curve,
(ii) the derivatives,
(iii) the critical points of f,
(iv) where the curve is increasing and decreasing,
(v) the points of inflexion and/or the concavity of the curve,
(vi) any asymptotes and intercepts.

A7. (a) Evaluate $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$
(b) Find the area of the surface generated by revolving the curve $y=5 \sqrt{x}, 1 \leq x \leq 2$, about the x -axis.
(c) Given that $I=\int_{0}^{1}\left(x^{2}+2 e^{-3 x}\right) d x$
(i) Using the Simpson rule (with four strips) evaluate the integral I
(ii) Find the exact value of the integral I
(iii) Find the absolute error.

A8. (a) Distinguish between a infinite series and sequence.
(b) (i) Use the ratio test to investigate the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}
$$

(ii) State the interval of convergence, if the function converges.
(c) Show that $\sum_{n=1}^{\infty} \frac{2^{n^{2}}}{n!}$ diverges. [Hint: $2^{n^{2}}=\left(2^{n}\right)^{n}$]

