

GWANDA STATE UNIVERSITY
FACULTY OF ENGINEERING AND THE ENVIRONMENT
DEPARTMENT OF GEOMATICS AND SURVEYING
WAVES AND OPTICS (EGS 1109)
Final Examination Paper
June 2023

EPOCH MINE CAMPUS

Time Allowed: 3 hours
Total Marks: 100
Examiner's Name: Mr. C.W Ndlovu
Mr P. Sigwegwe

INSTRUCTIONS

1. Answer ALL question in SECTION A.
2. Answer any THREE questions from SECTION B.
3. Use of calculators is permissible.

MARK ALLOCATION

Section A	$\mathbf{4 0}$
Question 1	20
Question 2	20
Section B	$\mathbf{6 0}$
Question 3	20
Question 4	20
Question 5	20
Question 6	20
Total Attainable	$\mathbf{1 0 0}$

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION (40 Marks)

Question 1

(a) What is a mirror?
(b) What is the difference between a real image and a virtual image?
(c) With aid of a diagram state and explain the laws of reflection and refraction.
(d) Suppose you have an unknown clear substance immersed in water, and you wish to identify it by finding its index of refraction. You arrange to have a beam of light enter it at an angle of $45,0^{\circ}$, and you observe the angle of refraction to be $40,3^{0}$. What is the index of refraction of the substance? The index of refraction of water is 1.33 .
(e) How far from the lens must the film in a camera be, if the lens has a 35.0 mm focal length and is being used to photograph a flower 75.0 cm away?

Question 2

a) A wave traveling along a string is described by $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})=(\mathbf{0 . 0 0 3 2 7 m}) \operatorname{Sin}(72.1 x-2.72 t)$, Determine the following characteristics of the wave motion
i) Amplitude
ii) Wave constant k
iii) Wavelength
iv) Period
v) Frequency
vi) Speed of the wave
b) Briefly describe how sound waves are used ships navigation and medical imaging [8]

SECTION B (60 marks)

Answer ANY THREE questions from this section.

Question 3

(a) With aid of a diagram explain how an image is formed in a
(i) Converging lens.
(ii) Diverging lens.
(b) What is the use of cladding in optical fibres?
(c) What is dispersion?
(d) An optical fibre cable has a refractive index of 1.5. Calculate the angle at which total internal reflection occurs.

Question 4

(a) With aid of a diagram differentiate between a concave and a convex mirror, taking into account the center of curvature (C), the field view, and distance of the image to the mirror and the height of the image.
(b) With the aid of a diagram explain how a signal is transmitted in an optical fibre.
(c) An optical fibre is manufactured using glass of refractive index of 1.5. Calculate the speed of
light travelling through the optical fibre. Speed of light in air $=3 * 10^{8} \mathrm{~m} / \mathrm{s}$

Question 5

a) State the principle of superposition for waves
b) Two separate waves traveling along a stretched string superpose and their individual progressive wave equation are given below.

$$
y_{1}(x, t)=y_{m} \sin (k x-\omega t) \quad y_{2}(x, t)=y_{m} \sin (k x-\omega t+\phi)
$$

Show that the overall equation of the combined wave form is

$$
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \cos \frac{1}{2} \phi\right] \sin \left(k x-\omega t+\frac{1}{2} \phi\right) . \tag{7}
\end{equation*}
$$

c) Describe Maxwell's rainbow, for each segment state the functions and applications

Question 6

a) Give the three main types of waves and give a brief description of each type
b) A string has a linear $\boldsymbol{\mu}=\mathbf{5 2 5} \mathbf{g} / \mathbf{m}$ and is under tension $\boldsymbol{\tau}=\mathbf{4 5 N}$. We send a sinusoidal wave frequency $f=120 \mathrm{~Hz}$ and amplitude $\mathrm{y}=8.5 \mathrm{~mm}$ along the string.
i) At what average rate does the wave transport energy
c) The general differential equation that governs the travel of waves of all types is

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Derive the above wave equation and show all the necessary steps
[10]

End of Question Paper.

