EMI/EMR: 1201

FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENTS OF MINING AND METALLURGY

ENGINEERING MATHEMATICS II

## EPOCH MINE CAMPUS

## Mr M MPOFU

2021 EXAMINATIONS
Time : 3 hours

Candidates should attempt ALL questions from Section A and ANY THREE questions from Section B.

Instruments and Materials

- Calculator


## SECTION A (40 marks)

## Answer ALL questions from this section.

A1. Define the following terms
(a) Explicit solution and Implicit solution.
(b) An nth-order Initial Value Problem (IVP).
(c) Homogeneous linear nth-order ode.

A2. Solve
(a) $e^{x} y \frac{d y}{d x}=e^{-y}+e^{-2 x-y}$
(b) $(5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y=0$
(c) $y^{\prime \prime}-2 y^{\prime}+5 y=0$

A3. The population of a mining compound grows at a rate proportional to the population present at time $t$. The initial population of 50 increases by $15 \%$ in 5 years. What will be the population in 15 years? How fast is the population growing at $t=15$ ?

A4. (a) Find the general solution of the simultaneous pdes:

$$
\begin{gathered}
\frac{\partial V}{\partial t}=y^{2} \\
\frac{\partial V}{\partial y}=2 y+t
\end{gathered}
$$

A5. (a) Find $L[f(t)]$
(i) $f(t)=\left(1+e^{2 t}\right)^{2}$
(ii) $f(t)=\cos 5 t+\sin 2 t$
(b) Evaluate $L^{-1}\left(\frac{3 s+1}{s^{2}-s-6}\right)$

## SECTION B (60 marks)

## Answer ANY THREE questions from this section.

A6. (a) Define a nonhomogeneous linear 2nd-order ode.
(b) Using the method of undetermined coefficients, solve

$$
y^{\prime \prime}-2 y^{\prime}-3 y=4 x-5+6 x e^{2 x}
$$

(c) The radioactive isotope of Lead, $\mathrm{Pb}-209$, decays at a rate proportional to the amount present at time $t$ and has a half-life of 3.3 hours. If 1 gram of this isotope is present initially, how long will it take for $90 \%$ of the Lead to decay?

A7. Engineers and Mathematicians from Gwanda State University were studying the effect of diameter of wire rope used to hoist a 13 tonnes load out of a 609.6 m vertical shaft. They discovered that the ropes were vibrating forming some transverse waves along the rope, as shown in Figure 1.


Figure 1: Transverse waves of a vibrating rope
$y(x, t)$ is the displacement of the string from equilibrium. Thus, to determine $y(x, t)$ at each point along the string at various times, a wave equation given by

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

where $c$ is a constant-wave velocity, was used to model the scenario.
(a) Given

Initial conditions: $\frac{\partial y(x, 0)}{\partial t}=0 ; y(x, 0)=f(x) ; 0<x<l$ and
Boundary conditions: $y(0, t)=y(l, t)=0, t>0$,
show that

$$
\begin{equation*}
y(x, t)=\sum_{r=1}^{\infty} b_{r} \sin \left(\frac{r \pi x}{l}\right) \cos \left(\frac{r \pi c t}{l}\right) \tag{16}
\end{equation*}
$$

where $r=1,2, \cdots$.
(b) To determine the effect diameter, they modeled the relationship between the displacement $y(x, t)$ and the diameter $D$ of the rope as

$$
y \propto \frac{1}{D}
$$

(i) Write down the equation connecting $y$ and $D$, given that $y=0.005$ when $D=0.75$.
(ii) Find $y$ when $D=\frac{9}{8}$.

A8. (a) Define Boundary Value Problem (BVP).
(b) Solve

$$
\frac{d^{2} i}{d t^{2}}+10 i=V(t)
$$

where $V(t)=\left\{\begin{array}{ll}1 & -\pi<t \leq 0 \\ -1 & 0<t \leq \pi\end{array}\right.$ and $V(t+2 \pi)=V(t)$

A9. (a) State three types of Fourier transforms.
(b) Find the Fourier transform of

$$
f(x)= \begin{cases}0, & x \leq 0 \\ e^{-k x} \cos (v x), & x>0, k>0\end{cases}
$$

(c) State four properties of Fourier transforms.

A10. Solve the IVP using the Laplace transforms
(a) $\frac{d y}{d t}=e^{2 t}, y(0)=\frac{1}{2}$
(b) $\frac{d^{2} y}{d t^{2}}+y=1, y(0)=2, y^{\prime}(0)=0$

## END OF QUESTION PAPER

"Do not worry about your difficulties in mathematics.
I can assure you mine are still greater." Albert Einstein

