

FACULTY OF ENGINEERING AND THE ENVIRONMENT

DEPARTMENT OF MINING ENGINEERING

ELECTRICAL ENGINEERING PRINCIPLES

EGS 1206 / EMI 1203 / EMR 1203

Final Examination Paper

July 2022

This examination paper consists of 8 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. K. Garapo

INSTRUCTIONS

1. Answer any 5 questions

2. Each question carries 20 marks each.

3. Use of calculators is permissible

Additional Requirements

NONE

MARK ALLOCATION

Questions	Marks
Question 1	20
Question 2	20
Question 3	20
Question 4	20
Question 5	20
Question 6	20
Question 7	20
Total Attainable	100

Page 1 of 8

Copyright: Gwanda State University, 2022

- (a) State Ohm's law and give any <u>one</u> use of a resistor in a circuit. [3]
- (b) Given a copper wire of cross-sectional diameter 1 mm and length 1m, calculate its conductance (in siemens), given the resistivity of $1.8\times10^{-8}~\Omega$ m. [5]
- (c) Given the circuit shown in <u>Figure 1</u>, what is the total resistance across the points A and B? [6]

(d) Given the wye and delta circuits shown in Figure 2, calculate the resistances R_a , R_b and R_c , given that $R_1=10\Omega$, $R_2=15\Omega$ and $R_1=5\Omega$. [6]

Figure 2

- (a) Refer to the circuit in shown in Figure 3.
 - (i) Determine the mesh currents I_1 , I_2 and I_3 . [8]
 - (ii) What is the current flowing through R_4 ? [2]

Figure 3

- (b) Refer to the circuit shown in Figure 4.
 - (i) State Kirchhoff's current law (KCL). [2]
 - (ii) Using Kirchhoff's current law (together with any other applicable circuit laws or theorems), compute branch currents I_1 , I_2 and I_4 , given that $I_3 = 0.27A$. [8]

Refer to the circuit in Figure 5.

- (a) State Thevenin's theorem. [2]
- (b) For the circuit shown in Figure 5, determine the Thevenin equivalent voltage and resistance. [10]
- (c) Draw the Norton equivalent circuit. [8]

Figure 6

(a) Referring to the differential amplifier in Figure 6, determine the output voltage V_{out} when:

(i)
$$V_1 = 4 \text{ mV} \text{ and } V_2 = 0 \text{ mV},$$
 [2]

(ii)
$$V_1 = 0 \text{ mV} \text{ and } V_2 = -6 \text{ mV},$$
 [2]

(iii)
$$V_1 = 40 \text{ mV}$$
 and $V_2 = 30 \text{ mV}$, [2]

(iv)
$$V_1 = 24 \text{ mV}$$
 and $V_2 = 42 \text{ mV}$, [2]

(v)
$$V_1 = -10 \text{ mV}$$
 and $V_2 = -10 \text{ mV}$. [2]

(b) Referring to the differentiating amplifier in <u>Figure 7</u>, determine the output function V_{out} , given the input function $V_{in} = 5Cos(\pi t)$, where t is time in seconds. [5]

Figure 7

(c) Sketch the output signal V_{out} determined in part (b) as a function of time.

[5]

Question 5

Figure 8

<u>Figure 8</u> shows the graphs of two alternating voltage signals S_1 and S_2 . For each signal, determine the following:

(a) the d.c. voltage
$$V_{d.c.}$$
, [2]

(b) the peak voltage
$$V_{p,}$$
 [2]

(c) the peak to peak voltage
$$V_{pp}$$
, [2]

(d) the r.m.s. voltage
$$V_{rms}$$
, [2]

(e) the period
$$T$$
, [2]

(f) the frequency
$$f$$
, [2]

(g) the function $V=A~Cos(2\pi ft~+~\varphi)+V_{d.c.}$, where φ is the phase angle, that describes each of the signals. [8]

Question 6

Figure 9

Refer to the circuit in <u>Figure 9</u> .	
(a) What is the capacitive reactance?	[3]
(b) What is the inductive reactance?	[2]
(c) What is the total reactance?	[3]
(d) What is the total impedance of the circuit?	[3]
(e) What is the phase angle between the source voltage and the current?	[3]
(f) What is the voltage across L, C and R?	[6]
Question 7	
(a) Three inductive loads each of resistance 75Ω and inductance $318.4~mH$ connected in delta to a $415~V,50~Hz,$ 3-phase supply. Determine	l are
(i) the phase voltage,	[3]
(ii) the phase current,	[6]
(iii) the line current.	[3]
(b) Determine the total power dissipated by three 20Ω resistors when conto a 440 V, 3-phase supply	nected
(i) in star,	[4]
(ii) in delta.	[4]