FACULTY OF ENGINEERING AND THE ENVIRONMENT
 DEPARTMENT OF MINING ENGINEERING
 ELECTRICAL ENGINEERING PRINCIPLES
 EGS 1206 / EMI 1203 / EMR 1203
 Final Examination Paper

July 2022
This examination paper consists of 8 pages
Time Allowed: 3 hours
Total Marks: 100

Examiner's Name: Mr. K. Garapo
INSTRUCTIONS

1. Answer any 5 questions
2. Each question carries 20 marks each.
3. Use of calculators is permissible

Additional Requirements

NONE
MARK ALLOCATION

Questions	Marks
Question 1	20
Question 2	20
Question 3	20
Question 4	20
Question 5	20
Question 6	20
Question 7	20
Total Attainable	100

Page 1 of 8
Copyright: Gwanda State University, 2022

Question 1

(a) State Ohm's law and give any one use of a resistor in a circuit.
(b) Given a copper wire of cross-sectional diameter 1 mm and length 1 m , calculate its conductance (in siemens), given the resistivity of $1.8 \times 10^{-8} \Omega \mathrm{~m}$.
(c) Given the circuit shown in Figure 1, what is the total resistance across the points A and B ?

Figure 1
(d) Given the wye and delta circuits shown in Figure 2, calculate the resistances R_{a}, R_{b} and R_{c}, given that $R_{1}=10 \Omega, R_{2}=15 \Omega$ and $R_{1}=5 \Omega$.

Figure 2

Question 2

(a) Refer to the circuit in shown in Figure 3.
(i) Determine the mesh currents I_{1}, I_{2} and I_{3}.
(ii) What is the current flowing through R_{4} ?

Figure 3
(b) Refer to the circuit shown in Figure 4.
(i) State Kirchhoff's current law (KCL).
(ii) Using Kirchhoff's current law (together with any other applicable circuit laws or theorems), compute branch currents I_{1}, I_{2} and I_{4}, given that $I_{3}=$ 0.27 A.

Figure 4

Question 3

Refer to the circuit in Figure 5.
(a) State Thevenin's theorem.
(b) For the circuit shown in Figure 5, determine the Thevenin equivalent voltage and resistance.
(c) Draw the Norton equivalent circuit.
[8]

Figure 5

Question 4

Figure 6
(a) Referring to the differential amplifier in Figure 6, determine the output voltage $V_{\text {out }}$ when:
(i) $V_{1}=4 \mathrm{mV}$ and $V_{2}=0 \mathrm{mV}$,
(ii) $V_{1}=0 \mathrm{mV}$ and $V_{2}=-6 \mathrm{mV}$,
(iii) $V_{1}=40 \mathrm{mV}$ and $V_{2}=30 \mathrm{mV}$,
(iv) $V_{1}=24 \mathrm{mV}$ and $V_{2}=42 \mathrm{mV}$,
(v) $V_{1}=-10 \mathrm{mV}$ and $V_{2}=-10 \mathrm{mV}$.
(b) Referring to the differentiating amplifier in Figure 7, determine the output function $V_{\text {out }}$, given the input function $V_{\text {in }}=5 \operatorname{Cos}(\pi t)$, where t is time in seconds.

Figure 7
(c) Sketch the output signal $V_{\text {out }}$ determined in part (b) as a function of time.

Question 5

Figure 8

Figure 8 shows the graphs of two alternating voltage signals S_{1} and S_{2}. For each signal, determine the following:
(a) the d.c. voltage $V_{\text {d.c. }}$,
(b) the peak voltage $V_{p .,}$
(c) the peak to peak voltage $V_{p p}$,
(d) the r.m.s. voltage $V_{r m s}$,
(e) the period T,
(f) the frequency f,
(g) the function $V=A \operatorname{Cos}(2 \pi f t+\varphi)+V_{\text {d.c. }}$, where φ is the phase angle, that describes each of the signals.

Question 6

Figure 9

Refer to the circuit in Figure 9.
(a) What is the capacitive reactance?
(b) What is the inductive reactance?
(c) What is the total reactance?
(d) What is the total impedance of the circuit?
(e) What is the phase angle between the source voltage and the current?
(f) What is the voltage across L, C and R ?

Question 7

(a) Three inductive loads each of resistance 75Ω and inductance 318.4 mH are connected in delta to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$, 3-phase supply. Determine
(i) the phase voltage,
(ii) the phase current,
(iii) the line current.
(b) Determine the total power dissipated by three 20Ω resistors when connected to a $440 \mathrm{~V}, 3$-phase supply
(i) in star,
(ii) in delta.

