

GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCES

BACHELOR OF SCIENCE (HONOURS) DEGREE IN CROP SCIENCE

CROP ECOLOGY AND PHYSIOLOGY

LCS 2105

First Semester Examination Paper

January 2022

This examination paper consists of 3 pages

Time Allowed: 3 hours
Total Marks: 100
Special Requirements: None

Examiner's Name: R. Mapuranga

INSTRUCTIONS

- 1. Answer any three (3) questions from section A and any two (2) questions from section B.
- 2. Start each question on a new page

MARK ALLOCATION

QUESTION	MARKS
EACH QUESTION	20
TOTAL ATTAINABLE MARKS	100

Copyright: Gwanda State University 2022

SECTION A: ANSWER ANY THREE (3) QUESTIONS [60 MARKS]

1.	(a)	Define the following terms	
	()	i. Leaf area duration (LAD)	[2]
		ii. Leaf area index (LAI)	[2]
	(b)	Explain why crop growth rate is depressed both below and above the optimum	L .
	` /	LAI	[4]
	(c)	Outline how farmers can control leaf area to optimise LAI and hence increase	
	()	canopy photosynthesis	[12]
2. (a	(a)	Using specific examples, distinguish between source and sink in relation to	
	()	photosynthesis in sorghum production	[4]
	(b)	Justify why the source sometimes becomes the sink during plant growth and	
	()	development	[4]
	(c)	Briefly explain how the proximity of the source to the sink affects partitioning of	L .
	()	assimilates in plants	[4]
	(d)	Explain how both source and sink strength affects partitioning of assimilates in	L .
	` /	plants	[8]
3.	(a)	Define the term growth analysis	[2]
	(b)	Describe the use of crop growth rate (CGR) in growth analysis. Include the	
	` /	mathematical function of CGR in your answer	[6]
	(c)	Calculate the CGR from following data: Dry weight of groundnut (C3 plant) at	
		t_1 = 200 g/m ² (W ₁), Dry weight of groundnut at t_2 = 300 g/m ² (W ₂), Time interval	
		of sampling $(t_2-t_1) = 10$ days.	[2]
	(d)	Discuss the growth stages most sensitive to moisture stress in groundnuts	
		(Arachis hypogaea L.)	[10]
4.	(a)	By use of a line graph, illustrate how PAR varies in a period of 24 hours.	[3]
	(b)	Explain how the following factors affect the distribution of PAR within a plant	
		community	
		i. Leaf arrangement and inclination	[4]
		ii. Angle of the sun	[4]
	(c)	Assuming that you are the Head of Crop Breeding Institute (CBI), ministry of	
		agriculture, and your team has been tasked by the minister of agriculture to	
		develop bean cultivars with high genetic yield notential of high quality	

Recommend	to	your	team	of	breeders	an	ideal	bean	ideotype	capable	of
achieving the minister's demands.											

[9]

SECTION B: ANSWER ANY TWO (2) QUESTIONS [40 MARKS]

5.	(a)	Differentiate between vesicular arbuscular mycorrhizal fungal – plant						
		associations from ectotrophic mycorrhizal fungal - plant associations	[4]					
	(b)	Explain how the knowledge of mycorrhizal – plant associations can be used to						
		improve crop production in south west Zimbabwe	[6]					
	(c)	Outline how the structure of the xylem vessels is adapted for water						
		transportation, minimizing resistance to water flow and overcomes cavitation	[10]					
6.	(a)	List and define the two types of low temperature stress in plants	[2]					
	(b)	Describe the direct and indirect damage caused by heat injury in plants	[6]					
	(c)	Evaluate the mechanisms of heat resistance in field crops such as (Zea mays L.)						
		and wheat (Triticum aestivum L.)	[12]					
7.	(a)	State the mechanisms of drought tolerance used by plants in drought situations	[5]					
	(b)	(b) Examine the management strategies to increase drought resistance in crops						
	(c) The use of mathematical equations to mimic growth and development of crops i							
		called modelling. Model simulates the behaviour of a real crop by predicting how						
		the crop will grow depending on the crop physiology and phenology and their						
		interactions with environmental factors (radiation, temperature, soil fertility,						
		pollutants etc). Assuming that you are the head of research in the ministry of						
		agriculture, write short advisory notes to a group of newly appointed extension						
		workers on the application of simulation modeling in agriculture	[10]					