

GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCE

BACHELOR OF SCIENCE (HONOURS) DEGREE IN CROP SCIENCE CROP PHYSIOLOGY 1

LCS 2101

First Semester Examination Paper

January 2022

This examination paper consists of 3 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: None

Examiner's Name: R. Mapuranga

INSTRUCTIONS

- 1. This paper contains two (2) Sections (A and B) and seven (7) Questions
- 2. Answer any two (2) questions from Section A and three (3) questions from Section B.
- 3. Start each question on a new page

MARK ALLOCATION

QUESTION	MARKS
SECTION A	40
SECTION B	60
TOTAL ATTAINABLE MARKS	100

Copyright: Gwanda State University 2022

SECTION A: ANSWER ANY TWO (2) QUESTIONS [40 MARKS]

1.	(a)	Define the following terms	
		i. Double fertilization	[1]
		ii. Generative cell	[1]
		iii. Endosperm	[1]
		iv. Apomixis	[1]
	(b)	Differentiate between the following terms	
		i. Complete flowers vs. incomplete flowers	[2]
		ii. Microsporocyte vs. megasporocyte	[2]
	(c)	Discuss the different mechanisms which prevent self fertilization in plants.	[12]
2.	(a)	Define the term desiccation tolerance	[1]
	(b)	List the importance of seed	[4]
	(c)	Giving examples, write short notes on endospermic, non-endospermic and	
		perispermic seed structures	[9]
	(d)	Discuss the roles of different environmental factors during seed germination	[6]
3.	(a)	Describe the dormancy Model for the regulation of dormancy and germination by	
		ABA and GA in response to the environment.	[8]
	(b)	Write short notes on the following classes of seed dormancy	
		i. Physical dormancy	[4]
		ii. Morphological dormancy	[4]
		iii. Physiological dormancy	[4]
		SECTION B: ANSWER ANY THREE (3) QUESTIONS [60 MARKS]	
4.	(a)	List the four (4) biosynthetic pathways for plant hormones, using named	
		examples of hormones	[4]
	(b)	Describe the structure, function and agricultural uses of each of the following	
		hormones	
		i. Ethylene	[6]
		ii. Auxin	[6]
	(c)	Evaluate how the ratio of auxin to cytokinin influence growth and development	

		with reference to cell division and growth, and root and shoot growth.	[6]
5.	(a)	A tropism is the directional growth of a plant, or part of a plant, in response to an	
		external stimulus. A stimulus is an action or condition that causes a response	
		while a response is an action or condition that is a reaction to a stimulus.	
		Define the two types of responses exhibited by plants when exposed to stimuli	[4]
	(b)	List the environmental stimuli which elicit each of six (6) tropisms.	[6]
	(c)	Describe two types of nastic movements, and explain how they help in adapting	
		plants to changes in their environment	[10]
6.	(a)	Define the following terms	
		i. Photoperiodism	[1]
		ii. Photomorphogenesis	[1]
		iii. Vernalization	[1]
	(b)	Describe the role of critical night length in flowering	[6]
	(c)	List the three (3) categories of plant responses to phytochrome	[3]
	(d)	Discuss the regulation of gene expression by phytochrome in flowering plants.	[8]
7.	(a)	State and define the three pathways used by water molecules as they move from	
		root hairs to the root xylem vessels	[6]
	(b)	Differentiate between vesicular arbuscular mycorrhizal fungal – plant	
		associations from ectotrophic mycorrhizal fungal - plant associations.	[4]
	(c)	Outline how the structure of the xylem vessels is adapted for water	
		transportation, minimizing resistance to water flow, and overcoming cavitation.	[10]

End of the Examination Paper