GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCES

BACHELOR OF SCIENCE HONOURS DEGREE IN CROP SCIENCE

Crop Physiology 1

LCS2101

First Semester Final Examination Paper

Jan/Feb 2021

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: None

Examiner's Name: R. Mapuranga

INSTRUCTIONS

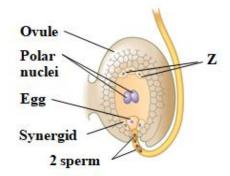
- 1. This paper contains two (2) Sections (A and B) and seven (7) Questions
- 2. Answer all questions from Section A and three questions from Section B.
- 3. Start each question on a new page

MARK ALLOCATION

QUESTION	MARKS
SECTION A	40
SECTION B	60
TOTAL ATTAINABLE MARKS	100

Copyright: Gwanda State University 2021

Section A: Answer all questions [40 Marks]


1. (a) Define the following terms as they are used in agriculture

		i. Self incompatibility	
		ii. Tropism	
		iii. Seed	
		iv. Solute potential	
	(b)	State the type of seed germination shown on the following diagrams M and N and	
		give an example of one plant species for each method of germination	[4]
		M N	
	(c)	Briefly describe any one simple experiment which led to the discovery of plant	
		hormones	[4]
	(d)	With the aid of a diagram (graph), list the different phases of seed germination.	
		State what happens during each phase	[8]
2.	(a)	List any two differences between low fluence responses and high irradiance	
		responses of plants to phytochrome	[4]
	(b)	Give one example each of the following types of fruits	[4]
		i. Simple fruit	
		ii. Aggregate fruit	
		iii. Multiple fruit	
		iv. Accessory fruit	
	(c)	Explain how the xylem vessels are adapted for smooth flow of water from the	F 43
	(1)	roots to the leaves of a plant	[4]
	(d)	Briefly outline how each of the following strategies is used to break seed	F0.7
		i. Cold stratification	[8]
		ii. Warm stratification	
		iii. Mechanical scarification	
		iv. Chemical scarification	
		1 Chemical boarmoulon	

[4]

Section B: Answer any three questions [60 Marks]

3. (a) The following diagram shows the process of double fertilization which is about to happen in the embryo sac.

- i. What name is given to the three cells labelled Z? [2]
- ii. State what each of the following will become after double fertilization: Ovary, Egg and Polar nuclei [6]
- (b) Discuss the three factors that affect cell water potential (Ψw) and write down the overall word equation for cell water potential in plants [12]
- 4. Outline the different types of plant hormones important in agriculture. Explain [20] how each functions in plants
- 5 (a) Identify the types of plant movements shown by plant species X and Y below [2]

Plant response X

[3]

[15]

Plant response Y

- (b) Which of these two (2) plant movements in 5 (a) above would be useful for a plant which catches and digest insects as its source of nutrition. Explain why this plant response is more useful in this situation than the other.
- (c) Describe any other three types of plant movements (tropism or nastic movement), and explain how they help a plant survive
- 6 (a) Define the word photoperiod [2]

	(b)	Discuss the classification of plant species according to their response to changes	
		in length of day and night	[18]
7.	(a)	State and explain any two benefits derived by plants from fungal mycorrhizal	
		associations	[4]
	(b)	In what way(s) does the fungal species benefit from this association	[2]
	(c)	Discuss the following theories/concepts as they are applied in plant-water	
		relations	
		i. Bulk flow	[5]
		ii. Cohesion-tension theory	[2]
		-	[5]
		iii. Transpiration pull	[4]
			_

End Of The Examination Paper