GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCES

BACHELOR OF SCIENCE HONOURS DEGREE IN CROP SCIENCE

LCS 1104 INTRODUCTION SOIL SCIENCE

FIRST SEMESTER EXAMINATION

January 2021

This examination paper consists of 4 pages

Time Allowed: 3 hours

Special Requirements: Calculator

Examiner's Name: Mathema. N

INSTRUCTIONS

- 1. Answer all questions in Section A
- 2. Answer only two questions in Section B

MARK ALLOCATION

QUESTION	MARKS
SECTION A	60
SECTION B	40
TOTAL ATTAINABLE MARKS	100

Copyright: Gwanda State University 2021

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

Question 1

	A farmer took his three soil samples to a laboratory and obtained the following data:				
	Soil texture: soil sample $A = 95\%$ sand, 5% silt and 5% clay				
	Soil texture: soil sample $B = 15\%$ sand, 15% silt and 70% clay				
	Soil texture: soil sample $C = 35\%$ sand, 35% silt and 30% clay				
	Bulk density: soil sample $A = 1500 \text{kg m}^{-3}$				
	Bulk density: soil sample $B = 1100 \text{kg m}^{-3}$				
	Bulk density: soil sample $C = 1300 \text{kg m}^{-3}$				
a)	Determine the type of soil for each of the three soil samples (A, B and C) u	ising the			
	texture triangle	[3]			
b)	Assuming that particle density for each soil sample is equal to 2600kgm ⁻³ .	Calculate			
	the % porosity for each of the soil samples?	[10]			
c)	From the results obtained in part b) explain the relationship between bulk der	nsity and			
	porosity.	[2]			
d)	Explain the difference in soil porosity between soil sample A and B	[5]			
Questi	ion 2				
a)	Describe the following processes in soils noting climatic regions where they	are most			
	prominent:				
i)	Ferrallitization	[5]			
ii)	Podzolization	[5]			
iii)	Gleying	[5]			
iv)	Salinisation	[5]			
Questi	ion 3				
a)	Describe two mechanical methods of managing soil erosion	[4]			
b)	Illustrate the usefulness of the following management practices when used to	control			
	soil temperature:				
	i. Tillage	[3]			
	ii. Organic mulches	[3]			
	iii. Irrigation and drainage	[4]			
c)	i. Explain the reasons for classifying soils	[3]			
	ii. Outline what you understand by fersiallitic group.	[3]			

SECTION B: ANSWER ANY TWO QUESTIONS IN THIS SECTION

Question 4

- a) Define Cation exchange capacity [1]
- b) Outline the sources of negative charge in soils [7]
- c) Illustrate any four (4) causes of Salinity in Agricultural soils, two (2) must be from non-irrigated and two (2) from irrigated lands [12]

Question 5

- a) Outline the structure of the following Alumino-silicate clays, clearly stating the; ratio of Octahedral to tetrahedral sheets, presence or absence of hydrogen bonding between layers, surface area, and swelling due to water absorption:
 - i. Kaolinite [3]
 - ii. Montmorillonite and vermiculite [3]
 - iii. Hydrous Mica [3]
 - iv. Chlorites [3]
- b) Using your knowledge of Aluminosilicate clays, explain why Vermiculite is used as one of the materials for preparing seedling growth medium. [2]
- c) Discuss why the red soils found around Filabusi and Harare are of less value to farmers than the black soils found in Nyamandlovu or Chisumbanje under the following headings;
 - i) Reactions leading to their formation [2]
 - ii) Types of clays [2]
 - iii) Nutrient and water holding capacity [2]

Question 6

a) You have been assigned to irrigate a Maize crop and obtained the following data for your soil profile:

Soil Horizon	A	B1	B2
Horizon/Root depth	0-150	150- 400	400- 900
(mm)			
Wilting point (mm	0. 15	0.21	0. 19
mm ⁻¹)			
Field capacity (mm	0. 35	0.46	0.39
mm ⁻¹)			

	i.	Calculate the AWC (Available Water Capacity) of each horizon in n	nm 100		
		mm ⁻¹	[2]		
	ii.	Calculate the PAW of each horizon	[3]		
	iii.	Calculate the total PAW in all three horizons	[3]		
b)	Briefly	y Outline the difference in frequency of irrigation cycles between li	ght and		
	heavy	textured soils	[2]		
c)	'It is vital for a farmer to manage the Carbon to Nitrogen ration of his/her soil'.				
	Justify	this statement giving examples.	[10]		
Questi	ion 7				
Outlin	e the fa	ctors that affect soil bulk density under the following headings;			
a)	Textu	re	[5]		
b)	Packaş	ging of particles	[6]		
c)	Organ	ic matter	[3]		
	Comp	action	[6]		

END OF EXAMINATION PAPER