

GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCE

BACHELOR OF SCIENCE HONOURS DEGREE IN CROP SCIENCE

LAS 1107 MOLECULAR BIOLOGY

FIRST SEMESTER EXAMINATION

JANUARY 2021

This examination paper consists of 3 pages

3 hours

Total Marks: 100

Special Requirements: None

Examiner's Name: Dr. T Goche

INSTRUCTIONS

- 1. Answer all questions in Section A
- 2. Answer only two questions in Section B

MARK ALLOCATION

QUESTION	MARKS			
SECTION A	60			
SECTION B	40			
TOTAL ATTAINABLE MARKS	100			
Copyright: Gwanda State University 2021				

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

1.	a) Exp	lain the Central dogma and reverse Central dogma of molecular biology.	(5)	
	b) Dis	cuss the structure of		
	i.	DNA	(5)	
	ii.	RNA	(5)	
	iii.	a gene	(5)	
2. a) Giving examples where necessary, explain the following terms/concepts:				
	i.	genetic code	(3)	
	ii.	mutation	(3)	
	iii.	RNA splicing	(3)	
	iv.	start codon	(3)	
	v.	operon	(3)	
	b) Wh	at is meant by repression and induction of <i>lac</i> operon?	(5)	
3.	a) Ou	tline the events involved in DNA replication.	(8)	
	b) M	ention the functions of at least three different types of RNA.	(6)	
	c) W	hat are the functions of ligases and helicases?	(6)	

SECTION B: ANSWER ANY TWO QUESTIONS IN THIS SECTION

4.	Explain the initiation, elongation and termination processes of translation in	
	prokaryotes.	(20)

5. Give an account on the mechanism of protein synthesis. (20)

6.	a) Define transcription.		(2)
	b) Name the enzyme that catalyses the transcription process and state add	itional	
	requirements for its function.		(6)
	c) Give another name for 'antisense strand'		(2)
	d) Give another name for the 'Hogness box'		(2)
	e) Explain the function of transcription factors.		(4)
	f) State the function of reverse transcriptase.	(2)	
	g) Name one codon that terminates protein synthesis.		(2)

7. With suitable illustrations, describe *trp* operon model. (20)

END OF EXAMINATION PAPER