

FACULTY OF ENGINEERING AND ENVIRONMENT DEPARTMENT OF METALLURGICAL/MINING ENGINEERING

ENGINEERING MATHEMATICS

EMR/EMI 1101

Final Examination Paper

January 2019

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr T GWEBU

INSTRUCTIONS

1. Answer ALL QUESTIONS IN SECTION A

2. Answer ANY THREE QUESTIONS FROM SECTION B

3. Use of calculators is permissible

MARK ALLOCATION

SECTION A	40 MARKS	
SECTION B	60 MARKS	
Total Attainable	100 MARKS	

SECTION A

A1. Find the limits

(a)
$$\lim_{x \to -5} \frac{x^2 - 25}{x^2 + 2x - 15}$$
, [3]

(b)
$$\lim_{x \to \infty} \frac{20x^4 - 7x^3}{2x + 9x^2 + 5x^4},$$
 [3]

(c)
$$\lim_{x \to 0} \left(\frac{1}{x^2}\right)^x.$$
 [4]

A2. Determine if the following function is continuous or discontinuous at x = 6.

$$f(x) = \begin{cases} 2x, & x < 6 \\ x - 1, & x \ge 6. \end{cases} [4]$$

A3. (a) Let
$$f(x) = \sqrt{2x-1}$$
. Evaluate $f'(5)$ from first principles. [4]

(b) Find the first derivative of
$$y = (x^2 + 4)^{2x}$$
. [4]

A4. Evaluate the following

(a)
$$\int 90x^2 \sin(2+6x^3) dx$$
, by using a substitution, [3]

(b)
$$\int \frac{1}{1-x^2} dx$$
, by the method of partial fractions. [4]

A5. (a) Determine the modulus and argument of the complex number z = 2 + 3i and express z in polar form. [5]

(b) Find the angle between the planes
$$3x - 6y - 2z = 15$$
 and $2x + y - 2z = 5$. [6]

SECTION B

B6. (a) Find the reduction formula for $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$. Hence, evaluate $\int_0^{\frac{\pi}{2}} \sin^3 x dx$. [8]

- (b) Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \frac{\pi}{2}$.
- (c) Compute the volume of the solid generated by revolving about y-axis, the region enclosed by the parabolas $y = x^2$ and $8x = y^2$. Use the method of washers. [6]

B7. (a) Differentiate $y = e^{x^2} \operatorname{sech}^{-1} x$. [5]

- (b) Find the coordinates of any stationary points on the curve $y = x^3 12x 5$ and distinguish between them. Hence sketch the curve. [8]
- (c) We want to construct a window whose middle is a rectangle and the top and bottom of the window are semi-circles. If we have 50m of framing material, what are the dimensions of the window that will let in the most light? [7]

B8. (a) Find all the asymptotes of the curve $y = \frac{x^3}{x^2 + x - 2}$. [4]

- (b) Use De Moivre's theorem to express $\cos 3\theta$ and $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$. [4]
- (c) Find the square roots of z = 5 + 3i in rectangular form correct to 4 significant figures. [6]
- (d) By considering the real and imaginary parts, evaluate

$$\int e^{4x} \cos 5x dx.$$

[6]

B9. (a) Find the volume of the parallelopiped with adjacent edges PQ, PR and PS. P(-2,1,0), Q(2,3,2), R(1,4,-1) and S(3,6,1). [6]

- (b) Find vectors \mathbf{v} and \mathbf{w} such that \mathbf{v} is parallel to (1, 2, 3), $\mathbf{v} + \mathbf{w} = (7, 3, 5)$ and \mathbf{w} is orthogonal to (1, 2, 3).
- (c) Find the distance between the skew lines

$$L_1: x = 1 + t, y = -2 + 3t, z = 4 - t,$$

$$L_2: x = 2s, y = 3 + s, z = -3 + 4s.$$

[9]

END OF QUESTION PAPER