FACULTY OF ENGINEERING AND ENVIRONMENT

ENGINEERING MATERIALS

EMR 1204

Final Examination Paper

August 2021

This examination paper consists of 4 pages

Time Allowed:	3 hours
---------------	---------

Total Marks: 100

Examiner's Name: Miss B. Ndlovu

Instructions

- 1. Answer all questions in Section A and any 2 Questions from Section B.
- 2. Each question carries 25 marks.
- 3. Use of calculators is permissible.

Additional Requirements

Calculator Periodic Table of Elements

Mark Allocation

Question 1-5	25 Marks
Part Questions	As shown in each part question.
Total Attainable	100

Page 1 of 4

Copyright: Gwanda State University, 2021

SECTION A: Answer all questions in this section.

QUESTION 1

- a) List any six important properties of solid materials that are of paramount importance in the study of engineering materials. [3]
- b) State and explain the three major factors that need to be considered by engineers upon selection of the right material(s), from the many thousands that are available, for a particular use.
- c) Understanding the interrelationships that exist between the structure, properties, processing, and performance of materials is key in engineering materials. Explain these interrelationships using a material of your choice as an example. [5]
- d) Define the term "nanotechnology".
- e) Smart or intelligent materials are a group of new and state of the art materials now being developed that will have a significant influence on many of our technologies.
 - i. Describe one major property of smart materials. [2]

[2]

ii. State any three (3) types of materials that are commonly used for actuators in smart materials.

[3]

iii. Discuss the major applications of smart materials in metallurgical and mining engineering. [4]

QUESTION 2

- a) Show that the atomic packing factor for the FCC crystal structure is 0.74. [4]
- b) Calculate the volume of an FCC unit cell in terms of the atomic radius *R*. [4]
- c) Copper has an atomic radius of 0.128 nm, an FCC crystal structure and a measured density of 8.94 g/cm³. Compute its theoretical density and compare the answer with its measured density.
 - [6]

Page 2 of 5

EMI/EMR 1204 ENGINEERING MATERIALS

- d) Discuss the properties and characteristics of crystalline and non-crystalline silicone dioxide.
 [6]
- e) Atomic bonding can be broadly classified as primary bonding and secondary bonding.
 State the types of bonds that fall under these two classes.

[5]

SECTION B: Answer any two questions in this section.

QUESTION 3

- a) Distinguish between the following types of defects:
 - i. Vacancy and self-interstitial [5]
 - ii. Screw dislocation and edge dislocation [5]

N.B: You may use diagrams to explain your answers.

b) Determine the composition, in atom percent, of an alloy that consists of 97 wt. % aluminum and 3 wt. % copper.

[3]

c) Atomic radius, crystal structure, electronegativity, and the most common valences for several elements are tabulated in *Table 1*. For those that are nonmetals, only atomic radii are indicated.

Element	Atomic Radius (nm)	Crystal Structure	Electro- negativity	Valence
Ni	0.1246	FCC	1.8	+2
С	0.071			
H	0.046			
0	0.060			
Ag	0.1445	FCC	1.9	+1
Al	0.1431	FCC	1.5	+3
Co	0.1253	HCP	1.8	+2
Cr	0.1249	BCC	1.6	+3
Fe	0.1241	BCC	1.8	+2
Pt	0.1387	FCC	2.2	+2
Zn	0.1332	HCP	1.6	+2

Table 1 (Extracted from Materials Science and Engineering by D. Callister)

Write down the elements you would expect to form the following with nickel:

	vv 11tC	down the elements you would expect to form the following with mekel.		
	i.	A substitutional solid solution having complete solubility.	[2]	
	ii.	A substitutional solid solution of incomplete solubility.	[2]	
	iii.	An interstitial solid solution.	[2]	
d)	Brief	y explain the working principles of the following microscopic techniques:		
	i.	Scanning Electron Microscopy	[3]	
	ii.	Transmission Electron Microscopy	[3]	
QUE	STIO	N 4		
a)	Defin	e the term an-elasticity.	[2]	
b)	Briefly explain the concept of plastic deformation from an atomic perspective. [3]			
c)	A piece of copper originally 305 mm long is pulled with a stress of 276 MPa. If the			
	deformation is entirely elastic and the magnitude of E for copper is 110 GPa, calculate			
	the resultant elongation. [3]			
d)) State the three major reasons why hardness tests are performed more frequently than any			
	other mechanical tests. [3]			
e)	Safe stress (or working stress) is based on the yield strength of the material and is defined			
	as the	yield strength divided by a factor of safety, N.		
	i.	State any three (3) important selection criteria for the value of N in eng	gineering	
		design problems.	[3]	
	ii.	Discuss the effects of choosing an inappropriate value of N.	[2]	

f) Briefly describe the following modes of failure in materials:

[0]	i.	Fracture		[3]
-----	----	----------	--	-----

ii. Fatigue

iii. Creep [3]

QUESTION 5

a) Briefly discuss how the choice of a material(s) for a particular component may affect the profitability of a mining or metallurgical plant. [3]

Page 4 of 5

- b) In a few sentences, write down what you understand by the term green engineering.[3]
- c) Draw a diagram showing the total materials cycle, and indicate the relevant issues that pertain to each stage of this cycle. [7]
- d) Imagine you are a metallurgical engineer at a gold plant. Your company wants to install a Carbon in Pulp (CIP) process for the leaching of gold from its ore; and you are assigned to design the plant. The process utilizes a toxic and corrosive chemical namely *sodium cyanide*. Describe how you would carry out the materials selection process for the leach tanks of a capacity of your choice, clearly outlining the pros and cons associated with the chosen material and two (2) other alternatives. [12]