

GWANDA STATE UNIVERSITY

EMI/EMR: 2201

FACULTY OF ENGINEERING AND THE ENVIRONMENT

DEPARTMENTS OF MINING AND METALLURGY

APPLIED MATHEMATICS

EPOCH MINE CAMPUS

MR R.G. MOYO

2021 EXAMINATIONS Time : 3 hours

Candidates should attempt **ALL** questions from Section A and **ANY THREE** questions from Section B.

Instruments and Materials

- Calculator.
- Graph paper
- Statistical Tables

	SECTION A (40 marks)							
Ans	ver ALL questions from this section.							
A1.	Define the following terms							
	(a) Interpolation	[2]						
	(b) Numerical differentiation	[2]						
	(c) Probability	[2]						
	(d) Truncation error	[2]						
	(e) Hypothesis testing	[2]						
 A2. (a) Construct a linear interpolation function given the 2 data points (3, 2) at (b) Given the table below 								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	f(x) 4.11 5.011 0.102 0.132 1.5020 1.5240							
	Evaluate							
	(i) $f'(1.5)$ using the backward difference method (ii) $f'(1.4)$ using the central difference method (iii) $f''(1.5)$	[2] [2] [3]						
A3.	Mr. R. G. delivers an average of two lectures per week at GSU. Assuming that the ber of lectures delivered can be modelled by a Poisson distribution, find the prototat he conducts							
	(a) exactly three lectures in a given week	[2]						
	(b) more than four lectures in a given week	[2]						
	(c) exactly four lectures in a given fortnight	[3]						
	(d) no lectures on a given day, assuming that GSU operates on a five-day we							
A4.	(a) Use Simpson's rule with $n = 2$ to obtain an approximation to $\int_0^{\frac{\pi}{4}} x \cos x dx$							
	(b) Solve $y' = \frac{x-y}{2}$ on [0,3] with $y(0) = 1$ and $h = 1$ using the Euler's method Hence calculate the error if $y(x) = 3e^{-\frac{x}{x}} + x - 2$	l. [5]						

[2]

[4]

[3]

SECTION B (60 marks)

Answer ANY THREE questions from this section.

- A5. (a) Determine the local truncation error (LTE) when solving an initial value problem using the Taylor's method [4]
 - (b) Use Taylor's method of order N = 3 to solve y' = 2x y over [0, 3] using y(0) = 1and h = 1 [16]
- A6. (a) During the 2014 World cup in a certain University, the probability that there was electricity on any particular day was $\frac{1}{3}$. In case that there was no electricity, a generator would be switched on. Independently, the probability that Welton watched a soccer match being screened live was $\frac{1}{4}$.
 - (i) Represent the above information by a means of a tree diagram.
 - (ii) Find the probability that there was no electricity and Welton did not watch the match being screened live. [2]
 - (b) 'Ntozonke Mine' needs to purchase cars for its top managers. The table below displays data on age and price for a sample of eleven cars being sold by Toyota car company. Ages are in years while prices are in thousand dollars.

Age	5	4	6	5	5	5	6	6	2	7	7
Price	8.5	10.3	7	8.2	8.9	9.8	6.6	9.5	16.9	7	4.8

- (i) Draw a scatter diagram for price against age
- (ii) Calculate the equation of the regression line of price on age of the car [4]
- (iii) Draw the line of the equation on a scatter diagram in (i) and use it to estimate the price o a 3 year old car. [4]
- (iv) Find the product-moment correlation co-efficient and comment on it [4]

A7. (a) Define the following terms

- (i) Runge-Kutta method of order four (RK_4) [2]
- (ii) First order ordinary differential equation
- (b) Apply Runge-Kutta method of order four (RK_4) to solve an initial value problem $y' = -2xy^2, y(0) = 1$ from x = 0 to x = 0.9 with h = 0.3 [15]

 $\left[5\right]$

- **A8.** (a) Outline the steps followed when carrying out a χ^2 test.
 - (b) The following data shows the ownership of satellite dishes by different social classes in a randomly chosen sample of 150 households at Gwanda State University.

Social class	Number of people who own satellite dishes	Number of those without a satellite dish
Executive staff	15	10
Academic Staff	23	8
Students	54	40

Test at 5% level of significance to establish if there is an association between ownership of a satellite dish and social class at GSU. [15]

- **A9.** (a) Given that $f(x) = xe^x$, use a three-point formula with h = 0.1 and h = 0.001 to find approximations to f''(2.5). Compare the calculated values with the true value of f''(2.5). Comment on the effect of changing your step size. [15]
 - (b) Discuss the applicability of interpolation and numerical differentiation in a mineral processing plant. [5]

END OF QUESTION PAPER

"Do not worry about your difficulties in mathematics. I can assure you mine are still greater." Albert Einstein