

GWANDA STATE UNIVERSITY

EMI/EMR: 1201

FACULTY OF ENGINEERING AND THE ENVIRONMENT DEPARTMENTS OF MINING AND METALLURGY

ENGINEERING MATHS II

EPOCH MINE CAMPUS

Mr M NDLOVU

SECOND SEMESTER 2021: EXAMINATION
Time : 3 hours

Candidates should attempt ANY FIVE questions from this paper with seven questions (20 marks each).

Instruments and Materials

- Calculator.

A1. (a) Find the general solutions of the following ODEs.
(i) $y^{\prime \prime}-2 y^{\prime}+y=0$.
(ii) $y^{\prime \prime}+3 y^{\prime}-4 y=0$.
(b) Find particular solutions of the following ODEs.
(i) $y^{\prime \prime}-y^{\prime}+3 y=\sin t$.
(ii) $y^{\prime \prime}+2 y^{\prime}-3 y=e^{t}$.

A2. (a) Suppose that the coefficient functions $p(t), q(t)$ are continuous in the interval $0<t<\pi$, and the functions $y_{1}(t)=t, y_{2}(t)=\sin t$ are solutions of the ODE

$$
\left.\left.y^{(\prime \prime}\right)+p(t) y^{(\prime}\right)+q(t) y=0
$$

for $0<t<\pi$:
(i) Compute the Wronskian of y_{1}, y_{2}.
(ii) Are they linearly independent on the interval $0<t<\pi$?
(iii) Is the pair $\left\{y_{1} ; y_{2}\right\}$ a fundamental set of solutions for the ODE?
(iv) Could $p(t), q(t)$ be continuous on $\pi<t<\pi$? Explain your answers.
(b) Hence, find the solution $y(t)$ of the initial value problem for the ODE with initial conditions

$$
y\left(\frac{\pi}{2}\right)=0, y^{\prime}\left(\frac{\pi}{2}\right)=2
$$

A3. (a) Define a matrix.
(b) Convert the differential equation $\dddot{x}-2 \ddot{x}+\dot{x}=0$ into the matrix equation $\dot{\mathrm{x}}(\mathrm{t})=\mathbf{A}(\mathrm{t}) \mathbf{x}(\mathrm{t})+\mathrm{f}(\mathrm{t})$
(c) If

$$
\mathbf{A}=\left(\begin{array}{cccc}
5 & 7 & 0 & 0 \\
-3 & -5 & 0 & 0 \\
0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2
\end{array}\right)
$$

(i) Find the characteristic equation and eigenvalues of \mathbf{A}.
(ii) State one use of the eigenvalues.
(d) $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0, y^{\prime}(\pi)=0, y^{\prime \prime}(\pi)=1$

A4. (a) The displacement $y(t)$ of an undamped oscillator of mass $m>0$ on a spring with spring constant $k>0$, and initial displacement a $a \neq 0$ and initial velocity 0 satisfies

$$
m y^{\prime \prime}+k y=0
$$

for $y(0)=a, y^{\prime}(0)=0$.
(i) Solve this initial value problem.
(ii) Show that the solution is periodic with period T, meaning that $y(t+T)=y(t)$, and express T in terms of m and k.
(iii) For what times t does the oscillator pass through equilibrium, meaning that $y(t)=0$?

A5. (a) Define a partial differential equation.
(b) How different is partial differential equation and ordinary differential equation. [2]
(c) The following equation is used in modelling of compressible fluid flow

$$
\frac{\partial p}{\partial t}+\operatorname{div}(\rho \mathbf{v})=0
$$

(i) What is the name given to this equation?
(ii) State the condition of steady flow.
(iii) State the condition of incompressibility.
(d) Obtain the linearized system of the nonlinear dynamical system below

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-x y \\
& \frac{d y}{d t}=2 y-x y
\end{aligned}
$$

A6. (a) What is a Differential Equation?
(b) (i) Find the solution of the initial value problem

$$
t y^{\prime}=\frac{1}{y+1}
$$

for $y(1)=0$
(ii) For what t-interval is the solution defined?
(c) Suppose that a is a constant, and consider the initial value problem

$$
y^{\prime}-y=e^{a t}
$$

for $y(0)=0$
(i) Find the solution if $a \neq 1$.
(ii) Find the solution if $a=1$

A7. (a) Define the following terms
(i) Fixed Point
(ii) steady State
(iii) Phase Plane
(b) Some examples of Phase diagrams in two-dimension will appear as:

Complete the following table for stability analysis

Stable Phase Plane	Unstable Phase Plane

(c) Analyse the stability of equilibrium point for the system

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=-x+y
\end{aligned}
$$

END OF QUESTION PAPER

"Do not worry about your difficulties in mathematics.
I can assure you mine are still greater." Albert Einstein

