

FACULTY OF ENGINEERING AND THE ENVIRONMENT

DEPARTMENT OF MINING ENGINEERING

ROCK ENGINEERING

EMI 5101

Final Examination Paper

January 2021

This examination paper consists of 8 pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. R Nyirenda

INSTRUCTIONS

- 1. This paper contains **ONE** section with **FIVE** questions.
- 2. Answer **QUESTION ONE** and **any other THREE questions**.
- 3. Each question carries 25 marks.
- 4. Where a question contains subdivisions, the mark value of each subdivision is shown in brackets.
- 5. Illustrate your answer, where appropriate, with large clearly labelled diagrams.
- 6. Start each question on a new page.
- 7. This paper comprises **8** printed pages.

Additional Requirements

Calculator

MARK ALLOCATION

Question 1 to 5	25Marks
Part Questions	As shown in each part question
Total Attainable	100

Page 1 of 8

Copyright: Gwanda State University, 2021

Question One

- a) Using Barton's Q system tables (Appendix A), calculate the Q value given the following information:
 - RQD = 88%
 - Joint set number = 3 sets
 - Joint roughness number = rough stepped (undulating)
 - Joint alteration number = unaltered, some stains
 - Joint water factor = dry excavation or minor inflow
 - Uniaxial compressive strength $\sigma_c = 185$ MPa
 - Major principal stress $\sigma_1 = 5.4$ MPa

[10

marks]

b) The Q value from the previous question depicts the rock mass condition at Kangaroo mine in Guruve. An underground crusher chamber of dimensions 10.5 m width × 8 m height is to be excavated in one of the deeper levels of the mine. Using Barton's Support Chart (Appendix B), estimate the permanent and temporary support requirements for both the roof and walls of this excavation.

[15 marks]

NB: Attach the chart to your answer booklet.

Question Two

a) Concerning discontinuities in any rock mass, briefly describe the influence of the following on shear strength of the discontinuities:

	i.	Surface r	oughness	5.					[4 m	arks]
	ii.	Discontin	uity scal	e.					[4 m	arks]
	iii.	Discontin	uity infil	11.					[4 m	arks]
b)	Using st	ress-strain	curves,	explain	the	differences	between	ductile	and	brittle
	deformati	ion.							[10	

marks]

c) Explain how the stress-strain curve can be used to design yielding pillars for deep underground mines. [3 marks]

Question Three

- a) The density of a certain rock mass is 2.7 t/m^3 with a *k* value of 0.75. If the depth of mining in the rock mass is at 650 m, calculate the following:
 - i. Vertical in-situ stress [3 marks]
 - ii. Horizontal in-situ stress [2 marks]
- b) i. Briefly describe 5 factors that influence in-situ stresses in a rock mass. [10 marks]

ii. Specify, in detail, the typical steps that are followed in a stress measurement programme for mining depths > 1 000m. [10 marks]

Question Four

Nyati mine is a room and pillar metalliferous operation where the rock mass has a density of 3.0 t/ t/m^3 and with an intact uniaxial compressive strength of 185 MPa. The depth of mining is at 350 m from the surface and the expected extraction ratio is 75%.

- a) Using the tributary area method, calculate the pillar stress assuming that the mining layout is horizontal. [6 marks]
- b) For an expected factor of safety value of 1.6 and stoping height of 4 m, determine the appropriate pillar width dimension. [14 marks]

NB: Pillar Strength = DRMS. $\frac{W^{0.5}}{H^{0.75}}$

c) Comment on the main limitation of using the tributary area method and Equation 1 to determine pillar width. Highlight a possible measure to mitigate this limitation.

(Equation 1)

[5 marks]

Question Five

a) Describe any 6 factors that contribute to instability of rock engineering structures.

[12

marks]

b) Differentiate between the 2 principal classes of rock support (i.e., active and passive support). Indicate 3 examples of support elements for each of 2 classes of rock support.

[8 marks]

- c) Recommend the appropriate rock support design approach for the following situations:
 - i. During the exploration and feasibility study stages
 - ii. During the later stages of the life of a mine.

[5 marks]

END OF EXAMINATION PAPER

${\rm Page}\ 3\ {\rm of}\ 10$

APPENDIX A: BARTON'S Q SYSTEM TABLES

APPENDIX A-1

000		
RQD		
0 - 25		is reported or measured as ≤ 10 (including 0),
	a nominal v	alue of 10 is used to evaluate Q.
50 - 75		
75 - 90	2. RQD interva	ls of 5, i.e. 100, 95, 90 etc. are sufficiently
90 - 100	accurate.	
J _n		
3		
4		
6		
9	1. For intersect	tions use $(3.0 \times J_n)$
12		
15	2. For portals u	ise (2.0 × J _n)
20		
J _r		
4		
3		
2		
	1. Add 1.0 if the	e mean spacing of the relevant joint set is
	grouter than	
	2 (= 0 5 com	he used for planar, clickopsided joints baving
0.5	•	be used for planar, slickensided joints having
4.0		provided that the lineations are oriented for
	minimum st	rengtn.
. ,		
(nominal)		
J _a	ør degrees (ap)	prox.)
0.75		1. Values of ϕr , the residual friction angle.
		are intended as an approximate guide
1.0	25 - 35	to the mineralogical properties of the
2.0	25 - 30	alteration products, if present.
3.0	20 - 25	
4.0	8 - 16	
	25 - 50 50 - 75 75 - 90 90 - 100 2 3 4 6 9 12 15 20 J _r 4 3 2 1.5 1.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 2 1.0 1.0 2 1.5 1.5 1.0 0.75 1.0 0.75 1.0 0.75 1.0 0.75 1.0 0.2 0.75 1.0 0.2 0.75 1.0 0.2 0.75 1.0 0.2 0.5 1.0 0.75 1.0 0.2 0.5 1.0 0.75 1.0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	$25 - 50$ a nominal v $50 - 75$ $75 - 90$ $2. RQD$ interva $90 - 100$ accurate. 3 J_n $0.5 - 1.0$ 2 3 4 6 9 $1.$ For intersect 12 12 $2.$ For portals u 20 $2.$ For portals u 12 $1.$ Add 1.0 if the greater than u 1.5 $1.$ Add 1.0 if the u 1.5 $2.$ $J_r = 0.5$ can u 1.0 minimum st $(nominal)$ 1.0 1.0 $25 - 35$ 2.0 $25 - 30$ 3.0 $20 - 25$

APPENDIX A-2

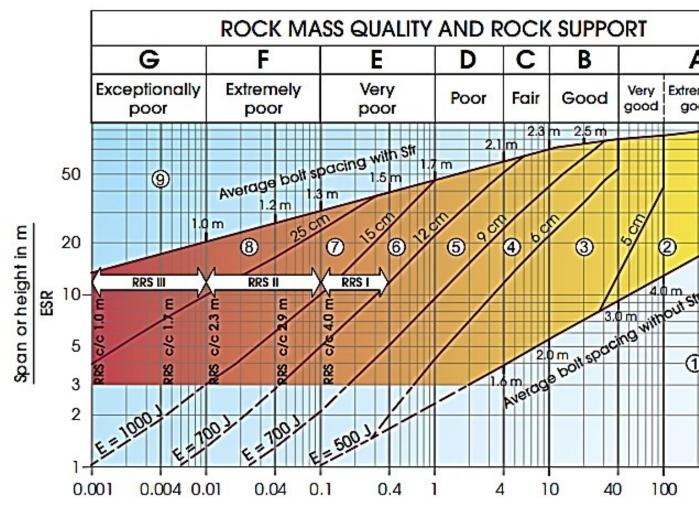
4, JOINT ALTERATION NUMBER J _a		<i>¢</i> r degrees (approx.)			
b. Rock wall contact before 10 cm shear					
F. Sandy particles, clay-free, disintegrating rock etc.	4.0	25 - 30			
G. Strongly over-consolidated, non-softening	6.0	16 - 24			
clay mineral fillings (continuous < 5 mm thick)					
H. Medium or low over-consolidation, softening	8.0	12 - 16			
clay mineral fillings (continuous < 5 mm thick)					
J. Swelling clay fillings, i.e. montmorillonite, (continuous < 5 mm thick). Values of J _a	8.0 - 12.0	6 - 12			
depend on percent of swelling clay-size					
particles, and access to water.					
c. No rock wall contact when sheared					
K. Zones or bands of disintegrated or crushed	6.0				
L. rock and clay (see G, H and J for clay	8.0				
M. conditions)	8.0 - 12.0	6 - 24			
N. Zones or bands of silty- or sandy-clay, small	5.0				
clay fraction, non-softening					
O. Thick continuous zones or bands of clay	10.0 - 13.0				
P. & R. (see G.H and J for clay conditions)	6.0 - 24.0				
5. JOINT WATER REDUCTION	J _w		2		
A. Dry excavation or minor inflow i.e. < 5 l/m locally	-w 1.0	< 1.0	ter pressure (kgf/cm ²)		
B. Medium inflow or pressure, occasional	0.66	1.0 - 2.5			
outwash of joint fillings	0.00	1.0 - 2.0			
C. Large inflow or high pressure in competent rock with unfilled joints	0.5	2.5 - 10.0	1. Factors C to F are crude estimates; increase J_{yy} if drainage installed.		
D. Large inflow or high pressure	0.33	2.5 - 10.0			
E. Exceptionally high inflow or pressure at blasting, decaying with time	0.2 - 0.1	> 10	Special problems caused by ice formation are not considered.		
F. Exceptionally high inflow or pressure	0.1 - 0.05	> 10			
6. STRESS REDUCTION FACTOR a. Weakness zones intersecting excavation, white	ch may	SRF			
cause loosening of rock mass when tunnel is e	excavated				
A. Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock any depth)		10.0	 Reduce these values of SRF by 25 - 50% but only if the relevant shear zones influence do not intersect the excavation 		
B. Single weakness zones containing clay, or chemically dis- tegrated rock (excavation depth < 50 m)					
C. Single weakness zones containing clay, or chemically dis-		2.5			
tegrated rock (excavation depth > 50 m)					
D. Multiple shear zones in competent rock (clay free), k surrounding rock (any depth)	oose	7.5			
E. Single shear zone in competent rock (clay free). (dep excavation < 50 m)	pth of	5.0			
F. Single shear zone in competent rock (clay free). (dep	oth of	2.5			
excavation > 50 m)					

DESCRIPTION		VALUE		NOTES
6. STRESS REDUCTION FACTOR			SRF	
b. Competent rock, rock stress prob	lems			
	σ_{c}/σ_{1}	^σ t ^σ 1		2. For strongly anisotropic virgin stress field
H. Low stress, near surface	> 200	> 13	2.5	(if measured): when 5≤ σ_1/σ_3 ≤10, reduce $\sigma_{ m C}$
J. Medium stress	200 - 10	13 - 0.66	1.0	to 0.8 σ_c and σ_t to 0.8 σ_t . When $\sigma_1/\sigma_3 > 10$,
K. High stress, very tight structure	10 - 5	0.66 - 0.33	0.5 - 2	reduce $\sigma_{\rm C}$ and $\sigma_{\rm t}$ to 0.6 $\sigma_{\rm C}$ and 0.6 $\sigma_{\rm t}$, where
(usually favourable to stability, may				$\sigma_{\rm c}$ = unconfined compressive strength, and
be unfavourable to wall stability)				$\sigma_{ m t}$ = tensile strength (point load) and $\sigma_{ m t}$ and
L. Mild rockburst (massive rock)	5 - 2.5	0.33 - 0.16	5 - 10	σ_{3} are the major and minor principal stresses.
M. Heavy rockburst (massive rock)	< 2.5	< 0.16	10 - 20	3. Few case records available where depth of
c. Squeezing rock, plastic flow of in	competent roc	k		crown below surface is less than span width.
under influence of high rock pres		Suggest SRF increase from 2.5 to 5 for such		
N. Mild squeezing rock pressure			5 - 10	cases (see H).
O. Heavy squeezing rock pressure			10 - 20	
d. Swelling rock, chemical swelling	activity depen	iding on prese	nce of wate	er
P. Mild swelling rock pressure			5 - 10	
R. Heavy swelling rock pressure			10 - 15	

ADDITIONAL NOTES ON THE USE OF THESE TABLES

When making estimates of the rock mass Quality (Q), the following guidelines should be followed in addition to the notes listed in the tables:

1. When borehole core is unavailable, RQD can be estimated from the number of joints per unit volume, in which the number of joints per metre for each joint set are added. A simple relationship can be used to convert this number to RQD for the case of clay free rock masses: $RQD = 115 - 3.3 J_V$ (approx.), where $J_V =$ total number of joints per m³ (0 < RQD < 100 for 35 > $J_V > 4.5$).


2. The parameter J_n representing the number of joint sets will often be affected by foliation, schistosity, slaty cleavage or bedding etc. If strongly developed, these parallel 'joints' should obviously be counted as a complete joint set. However, if there are few 'joints' visible, or if only occasional breaks in the core are due to these features, then it will be more appropriate to count them as 'random' joints when evaluating J_n .

- 3. The parameters J_f and J_g (representing shear strength) should be relevant to the weakest significant joint set or clay filled discontinuity in the given zone. However, if the joint set or discontinuity with the minimum value of J_f/J_g is favourably oriented for stability, then a second, less favourably oriented joint set or discontinuity may sometimes be more significant, and its higher value of J_f/J_g should be used when evaluating Q. The value of J_f/J_g should in fact relate to the surface most likely to allow failure to initiate.
- 4. When a rock mass contains clay, the factor SRF appropriate to loosening loads should be evaluated. In such cases the strength of the intact rock is of little interest. However, when jointing is minimal and clay is completely absent, the strength of the intact rock may become the weakest link, and the stability will then depend on the ratio rock-stress/rock-strength. A strongly anisotropic stress field is unfavourable for stability and is roughly accounted for as in note 2 in the table for stress reduction factor evaluation.

5. The compressive and tensile strengths (σ_{c} and σ_{t}) of the intact rock should be evaluated in the saturated condition if this is appropriate to the present and future in situ conditions. A very conservative estimate of the strength should be made for those rocks that deteriorate when exposed to moist or saturated conditions.

APPENDIX B: BARTON'S SUPPORT CHART

APPENDIX B-1

APPENDIX B-2

Support categories

- ① Unsupported or spot bolting
- ② Spot bolting, SB
- ③ Systematic bolting, fibre reinforced sprayed concrete, 5-6 cm, B+Str
- ④ Fibre reinforced sprayed concrete and bolting, 6-9 cm, Str (E500)+B
- (5) Fibre reinforced sprayed concrete and bolting, 9-12 cm, Sfr (E700)+B
- (6) Fibre reinforced sprayed concrete and bolting, 12-15 cm + reinforced ribs of sprayed concrete and bolting, Sfr (E700)+RRS I +B
- (7) Fibre reinforced sprayed concrete >15 cm + reinforced ribs of sprayed concrete and bolting, Str (E1000)+RRS II+B
- (8) Cast concrete lining, CCA or Str (E1000)+RRS III+B
- 9 Special evaluation
- Bolts spacing is mainly based on Ø20 mm
- E = Energy absorbtion in fibre reinforced sprayed concrete
- ESR = Excavation Support Ratio

Areas with dashed lines have no empirical data

RRS - spacing related to Q-value

Si30/6 Ø16 - Ø20 (span 10m) D40/6+2 Ø16-20 (span 20m)

Si35/6 Ø16-20 (span 5m) D45/6+2 Ø16-20 (span 10m)

D55/6+4 Ø20 (span 20m)

D40/6+4 Ø16-20 (span 5 m)

D55/6+4 Ø20 (span 10 m) Special evaluation (span 20 m)

Si30/6 = Single layer of 6 rebars, 30 cm thickness of sprayed concrete

D = Double layer of rebars

- Ø16 = Rebar diameter is 16 mm
- c/c = RSS spacing, centre centre