GWANDA STATE UNIVERSITY

FACULTY OF ENGINEERING AND ENVIRONMENT DEPARTMENT OF GEOMATICS AND SURVEYING

Adjustment of Surveying Measurements

EGS 5204
Final Examination Paper

This examination paper consists of 4 pages

| Time Allowed $:$ | 3 hours |
| :--- | :--- | :--- |
| Total Marks : | 100 |
| Examiner's Name : | Mr. J B MANYATI |
| INSTRUCTIONS | |

1. Answer ALL 5 questions
2. Each question carries 20 marks
3. Use of calculators is permissible, but programmable calculators are not allowed in the exam

	(c)		Given the following inverse matrix and a standard deviation of unit weight of 1.45 , determine the parameters of the error ellipse. $\left(A^{T} W A\right)^{-1}=\left[\begin{array}{ll} q_{x x} & q_{x y} \\ q_{x y} & q_{y y} \end{array}\right]=\left[\begin{array}{ll} 0.0004894 & 0.0000890 \\ 0.0000890 & 0.0002457 \end{array}\right]$	[3]
			Compute S_{X} and S_{Y}	[2]
4			The use of Lagrange multiplies in the expression; $E=V^{T} G^{-1} V-2 k^{T}[A V+B \Delta-f]$ Can lead to a unique solution of the combined (general) least squares case.	
		(i)	Prove that a solution may be found from $\Delta=N^{-1} t$ Where; $\begin{aligned} N & =B^{T} G_{e}^{-1} B \\ t & =B^{T} G_{e}^{-1} f \end{aligned}$ Δ is vector of unknown parameters B is matrix of known coefficients G_{e} is the cofactor matrix for equivalent observations f is the vector of constants	[8]
		(ii)	Give an expression that can be used for \bar{l},the vector of adjusted observations.	[2]
		(iii)	Show that $G_{l l}=G-G_{v v}$	[10]
5			Two uncorrelated measurements l_{1} and l_{2} with variances 0.5 and 2 respectively are represented by the following linear conditions (conditions and constraints). $\begin{gathered} {\left[\begin{array}{l} v_{1} \\ v_{2} \end{array}\right]+\left[\begin{array}{ccc} -3 & 1 & -1 \\ 1 & -4 & -2 \end{array}\right]\left[\begin{array}{l} X \\ Y \\ Z \end{array}\right]=\left[\begin{array}{c} 2 \\ 18 \end{array}\right]} \\ {\left[\begin{array}{ccc} -1 & 1 & 1 \\ 1 & -3 & 1 \end{array}\right]\left[\begin{array}{l} X \\ Y \\ Z \end{array}\right]=\left[\begin{array}{c} 2 \\ 26 \end{array}\right]} \end{gathered}$	
		(i)	Evaluate least square values of $\overline{l_{1}}$ and $\overline{l_{2}}$.	[8]
		(ii)	Evaluate variance and covariance matrix $\overline{l_{1}}$ and $\overline{l_{2}}$.	[12]

- THE END -

