GWANDA STATE UNIVERSITY

FACULTY OF LIFE SCIENCES

DEPARTMENT OF CROP SCIENCES

BACHELOR OF SCIENCE HONOURS DEGREE IN CROP SCIENCE

CELL BIOLOGY AND GENETICS

LAS 1101

First Semester Final main Examination Paper

June 2019

This examination paper consists of 2 pages

Time Allowed: 3 hours

Total Marks:100

Special Requirements: None

Examiner's Name: A. Banda

INSTRUCTIONS

- 1. Answer all questions in Section A
- 2. Answer only two questions in Section B

MARK ALLOCATION

QUESTION	MARKS
SECTION A	60
SECTION B	40
TOTAL ATTAINABLE MARKS	100

Copyright: Gwanda State University

Section A Compulsory

1a. Give five differences between DNA replication and transcription of RNA.	[5]
b. Describe the functions of DNA,mRNA,tRNA,r RNA.	[8]
c. Explain why DNA replication is referred to as 'semi-conservative replication.'	[7]

				Seco	and base		
Aia - alanine			U	С		G	
Arg = arginine			ך טטט	ך עכע	UAU "	UGU T	1
Asn = asparagine			UUC Phe	UCC	UAC Tyr	UGC Cys	1
Asp = aspartic acid		U		UCA Ser	UAA Stop	UGA Stop	- 88
Cys = cysteine			UUG Leu	UCG	UAG Stop	UGG Trp	
Gin = glutamine			000 1	0.00	und Stop	ogg inp	1
Giu = giutamic acid			CUU 7	CCU T	CAU 7	CGU 7	1
Gly = glycine			CUC	CCC	CAC His	CGC	0
His = histidine		c	CUA Leu	CCA Pro		CGA Arg	A
lie = isoleucine	8		CUG _	CCG	CAA GIn	CGG	G
Leu = leucine	First base						
Lys = lysine	Fis		AUU 7	ACU 7	AAU 7	AGU 7	U
Met « methionine			AUC > lle	ACC	ACC Asn	AGC Ser	C
Phe = phenylalanine			AUA	ACA Thr	444.77	AGA Z Are	A
Pro × proline			AUG Met	ACG	AAG Lys	AGG Arg	G
Ser = serine							U
Thr = threonine			GUU 7	GCU 7	GAU 7 Asp	GGU 7	
Try = tryptophan		G	GUC > Val	GCC Ala	GAC _	GGC Gly	C
Fyr = tyrosine			GUA	GCA AND	GAA 7 Glu	GGA GGG	A

Fig 2.1: The genetic code. The mRNA codons correspond to the 20 amino acids made by translation on the ribosomes. Three codons act as stop codons and under certain conditions the codon AUG initiates protein synthesis

a. Using Figure 2.1, the genetic code, answer the following questions

(i)	What is the start codon?	[1]
(i)	What is the start codon?	[1]

[1]

- (ii) What are the termination codons?
- (iii) What is the sequence of codons m RNA when DNA contains the following sequences of bases, AGC, TAT, CGA, GTC, AAA? Further on what is the formed polypeptide? [5]

b. What are the possible kinds of gametes produced by diploid organisms with the following genotypes?

```
(i) MM (ii) mm (iii) mmpp (iv) MmPp (v) MmPP (vi) mmPp [13]
```

3a. Define the difference between the following terms:

(i) Gene and allele.

- (ii) Dominant allele and recessive allele
- (iii) Homozygote and heterozygote
- (iv) Genotype and phenotype

b. In hamsters, rough coat (R) is dominant to smooth coat (r) and black coat B is dominant to white coat b. A homozygous rough, black male is crossed with a smooth, white female hamster. What phenotypes would you expect in the F_2 generation and in what ratios would you expect them to occur. Show your working starting from F_1 generation. [12]

[8]

Section B Answer only two questions in this Section

4. Discuss the functional importance of the mitochondria and chloroplast inner membranes. [20]

5a. Compare and contrast the preparation of specimen for Electron microscope and Light microscope. [5]

b. Describe the procedures involved in the preparation of a rat Kidney section for electron microscope. Give reasons for the steps you take. [15]

6a. Define true breeding and describe how can a test cross be used to determine if an organism is true breeding. [5]

b. The F1 generation genotype and phenotype of pea plants were TtpP (tall purple), Ttpp (tall white), ttpP (short purple), ttpp (short white). Carry out a test cross, showing the possible parental genotype and phenotype [15]

7. Write short notes on the following:

a. Lysosomes	[6]
b. Ribosomes	[6]
c. Nucleus	[8]